多项式回归

多项式回归

在上一节所介绍的非线性回归分析,首先要求我们对回归方程的函数模型做出推断。尽管在一些特定的情况下我们能够比較easy地做到这一点,可是在很多实际问题上经常会令我们不知所措。依据高等数学知识我们知道,不论什么曲线能够近似地用多项式表示,所以在这样的情况下我们能够用多项式进行逼近,即多项式回归分析。

    一、多项式回归方法

如果变量yx的关系为p次多项式,且在xi处对y的随机误差 <span>多项式回归</span> (i=1,2,…,n)服从正态分布N(0,<span>多项式回归</span>),则

<span>多项式回归</span>

    

xi1=xi, xi2=xi2,…,xip=xip

    则上述非线性的多项式模型就转化为多元线性模型,即

 <span>多项式回归</span>

    这样我们就能够用前面介绍的多元线性回归分析的方法来解决上述问题了。其系数矩阵、结构矩阵、常数项矩阵分别为

<span>多项式回归</span>   (2-4-11)

 

<span>多项式回归</span>                 (2-4-12)

 

<span>多项式回归</span>                       (2-4-13)

 

    回归方程系数的最小二乘预计为

<span>多项式回归</span>                       (2-4-14)

须要说明的是,在多项式回归分析中,检验bj是否显著,实质上就是推断xj次项xjy是否有显著影响。

对于多元多项式回归问题,也能够化为多元线性回归问题来解决。比如,对于

<span>多项式回归</span>       (2-4-15)

    令xi1=Zi1, xi2=Zi2, xi3=Zi12, xi4=Zi1Zi2, xi5=Zi22

    (2-4-15)式转化为

<span>多项式回归</span>

    转化后就能够依照多元线性回归分析的方法攻克了。

    以下我们通过一个实例来进一步说明多项式回归分析方法。

    

    一、应用举例

    2-4-2  某种合金中的主要成分为元素AB,试验发现这两种元素之和与合金膨胀系数之间有一定的数量关系,试依据表2-4-3给出的试验数据找出yx之间的回归关系。

2-4-3  2-4-2试验数据

<span>多项式回归</span>

 首先画出散点图(图2-4-3)。从散点图能够看出,yx的关系能够用一个二次多项式来描写叙述:

<span>多项式回归</span>

i=1,2,3…,13

2-4-3  2-4-2的散点图

    

xi1=xi,xi2=xi2,

    

<span>多项式回归</span>

    如今我们就能够用本篇第二章介绍的方法求出<span>多项式回归</span> <span>多项式回归</span> <span>多项式回归</span> 的最小二乘预计。由表2-4-3给出的数据,求出

<span>多项式回归</span>

    由(2-2-16)式

<span>多项式回归</span>

    由此可列出二元线性方程组

<span>多项式回归</span>

    将这个方程组写成矩阵形式,并通过初等变换求b1,b2和系数矩阵L的逆矩阵L-1:

<span>多项式回归</span>

    于是

    b1=-13.3854

    b2=0.16598

    b0=2.3323+13.3854<span>多项式回归</span> 40-0.16598<span>多项式回归</span> 1603.5=271.599

    因此

<span>多项式回归</span>

    以下对回归方程作显著性检验:

    由(2-2-43)式

S=<span>多项式回归</span>

    由(2-2-42)式

S=<span>多项式回归</span>

S=Lyy– S=0.2572

 将上述结果代入表2-2-2中制成方差分析表例如以下:

2-4-4          方差分析表

<span>多项式回归</span>

 

    F检验表,F001210=7.56, F>F0.01(2 ,10),说明回归方程是高度显著的。

    以下对回归系数作显著性检验

    由前面的计算结果可知:

    b1=-13.3854            b2=0.16598

    c11=51.125            c22=7.9916<span>多项式回归</span> 10-3

    由(2-2-54)式

<span>多项式回归</span>

    由(2-2-53)式

<span>多项式回归</span>

<span>多项式回归</span>

    检验结果说明的x一次及二次项对y都有显著影响。

 

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/119162.html原文链接:https://javaforall.cn

【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛

【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...

(0)


相关推荐

  • 如何干净的卸载mysql_软件卸载了权限还在吗

    如何干净的卸载mysql_软件卸载了权限还在吗如何完美的卸载掉Mysql?按以下几个步骤去执行。步骤一确认你的mysql服务是关闭的状态,不然卸载不干净。在我的电脑(计算机)–管理–服务和应用程序–服务,找到mysql把状态关闭。步骤二在控制面板中卸载mysql软件。步骤三卸载过后删除C:ProgramFiles(x86)\MySQL该目录下剩余了所有文件,把mysql文件夹也删了步骤四window…

  • ubuntu apache2配置详解(含虚拟主机配置方法)[通俗易懂]

    ubuntu apache2配置详解(含虚拟主机配置方法)[通俗易懂]在Windows下,Apache的配置文件通常只有一个,就是httpd.conf。但我在UbuntuLinux上用apt-getinstallapache2命令安装了Apache2后,竟然发现它

  • python的进制转换器,Python进制转换[通俗易懂]

    python的进制转换器,Python进制转换[通俗易懂]进制转换:进制转换是人们利用符号来计数的方法。进制转换由一组数码符号和两个基本因素“基数”与“位权”构成。基数是指,进位计数制中所采用的数码(数制中用来表示“量”的符号)的个数。位权是指,进位制中每一固定位置对应的单位值。简单转换理念:把二进制三位一组分开就是八进制,四位一组就是十六进制二进制与十进制:(1)二进制转十进制:“按权展开求和”(1011)2=1×2**3+0x2**2+1x…

  • web 应用程序_web应用程序是什么意思

    web 应用程序_web应用程序是什么意思1、HTTP通讯协议根据联机方式与所使用的网络服务不同,会有不同的通信协议。例如,发送信件时会使用SMTP(SimpleMailTransferProtocol,简单邮件传输协议),传输文件会

  • 万能密码大全[通俗易懂]

    万能密码大全[通俗易懂]aspaspx万能密码1:”or”a”=”a2: ‘)or(‘a’=’a3:or1=1–4:’or1=1–5:a’or’1=1–6:”or1=1–7:’or’a’=’a8:”or”=”a’=’a9:’or”=’10:’or’=’or’11:1

  • datagrip 2021激活码-激活码分享

    (datagrip 2021激活码)好多小伙伴总是说激活码老是失效,太麻烦,关注/收藏全栈君太难教程,2021永久激活的方法等着你。IntelliJ2021最新激活注册码,破解教程可免费永久激活,亲测有效,下面是详细链接哦~https://javaforall.cn/100143.htmlF6EG2ZUBVX-eyJsaWNlbnNlSWQi…

发表回复

您的电子邮箱地址不会被公开。

关注全栈程序员社区公众号