大家好,又见面了,我是全栈君,今天给大家准备了Idea注册码。
设有一个序列a[0],a[1]…a[n];当中a[i-1]前是已经有序的,当插入时a[i]时,利用二分法搜索a[i]插入的位置
效率:O(N^2),对于初始基本有序的序列,效率上不如直接插入排序;对于随机无序的序列,效率比直接插入排序要高
/* * 二分(折半)插入排序 * 设有一个序列a[0],a[1]...a[n];当中a[i-1]前是已经有序的,当插入时a[i]时,利用二分法搜索a[i]插入的位置 */public class BinaryInsertSort { public static void main(String[] args) { int len = 10; int[] ary = new int[len]; Random random = new Random(); for (int j = 0; j < len; j++) { ary[j] = random.nextInt(1000); } binaryInsert(ary); /* * 复杂度分析: 最佳情况,即都已经排好序,则无需右移,此时时间复杂度为:O(n lg n) 最差情况,所有逆序,此时复杂度为O(n^2) * 无法将最差情况的复杂度提升到O(n|logn)。 */ // 打印数组 printArray(ary); } /** * 插入排序 * @param ary */ private static void binaryInsert(int[] ary) { int setValueCount = 0; // 从数组第二个元素開始排序,由于第一个元素本身肯定是已经排好序的 for (int j = 1; j < ary.length; j++) {// 复杂度 n // 保存当前值 int key = ary[j]; // ∆ 利用二分查找定位插入位置// int index = binarySearchAsc(ary, ary[j], 0, j - 1);// 复杂度:O(logn)// int index = binarySearchDesc(ary, ary[j], 0, j - 1);// 复杂度:O(logn) int index = binarySearchDesc2(ary, ary[j], 0, j - 1);// 复杂度:O(logn) printArray(ary); System.out.println("第" + j +"个索引上的元素要插入的位置是:" + index); // 将目标插入位置,同一时候右移目标位置右边的元素 for (int i = j; i > index; i--) {// 复杂度,最差情况:(n-1)+(n-2)+...+n/2=O(n^2) ary[i] = ary[i - 1]; //i-1 <==> index setValueCount++; } ary[index] = key; setValueCount++; } System.out.println("\n 设值次数(setValueCount)=====> " + setValueCount); } /** * 二分查找 升序 递归 * * @param ary * 给定已排序的待查数组 * @param target * 查找目标 * @param from * 当前查找的范围起点 * @param to * 当前查找的返回终点 * @return 返回目标在数组中,按顺序应在的位置 */ private static int binarySearchAsc(int[] ary, int target, int from, int to) { int range = to - from; // 假设范围大于0,即存在两个以上的元素,则继续拆分 if (range > 0) { // 选定中间位 int mid = (to + from) / 2; // 假设临界位不满足,则继续二分查找 if (ary[mid] > target) { /* * mid > target, 升序规则,target较小,应交换位置 前置, 即target定位在mid位置上, * 依据 查找思想, 从from到 mid-1觉得有序, 所以to=mid-1 */ return binarySearchAsc(ary, target, from, mid - 1); } else { /* * mid < target, 升序规则,target较大,不交换位置,查找比較的起始位置应为mid+1 */ return binarySearchAsc(ary, target, mid + 1, to); } } else { if (ary[from] > target) {//如 5,4, 要插入的是4 return from; } else { return from + 1; } } } /** * 二分查找 降序, 递归 */ private static int binarySearchDesc(int[] ary, int target, int from, int to) { int range = to - from; if (range > 0) { int mid = (from + to) >>> 1; if (ary[mid] > target) { return binarySearchDesc(ary, target, mid + 1, to); } else { return binarySearchDesc(ary, target, from, mid - 1); } } else { if (ary[from] > target) {//如 5,4, 要插入的是4 return from + 1; } else { return from; } } } /** * 二分查找 降序, 非递归 */ private static int binarySearchDesc2(int[] ary, int target, int from, int to) {// while(from < to) { for (; from < to; ) { int mid = (from + to) >>> 1; if (ary[mid] > target) { from = mid + 1; } else { to = mid -1; } } //from <==> to; if (ary[from] > target) {//如 5,4, 要插入的是4 return from + 1; } else { return from; } } private static void printArray(int[] ary) { for (int i : ary) { System.out.print(i + " "); } }}
打印
918 562 442 531 210 216 931 706 333 132 第1个索引上的元素要插入的位置是:1918 562 442 531 210 216 931 706 333 132 第2个索引上的元素要插入的位置是:2918 562 442 531 210 216 931 706 333 132 第3个索引上的元素要插入的位置是:2918 562 531 442 210 216 931 706 333 132 第4个索引上的元素要插入的位置是:4918 562 531 442 210 216 931 706 333 132 第5个索引上的元素要插入的位置是:4918 562 531 442 216 210 931 706 333 132 第6个索引上的元素要插入的位置是:0931 918 562 531 442 216 210 706 333 132 第7个索引上的元素要插入的位置是:2931 918 706 562 531 442 216 210 333 132 第8个索引上的元素要插入的位置是:6931 918 706 562 531 442 333 216 210 132 第9个索引上的元素要插入的位置是:9 设值次数(setValueCount)=====> 24931 918 706 562 531 442 333 216 210 132
发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/117937.html原文链接:https://javaforall.cn
【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛
【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...