离散系统的变换域

离散系统的变换域

大家好,又见面了,我是全栈君,今天给大家准备了Idea注册码。

一些实际信号不存在傅立叶变换。正如变换引入拉普拉斯。加阻尼因子满足条件。

从拉普拉斯到z兑换,它可以被理解为映射到一个离散连续。

z转型是一个无穷级数,还有就是无穷级数的问题域的融合。

收敛可以理解为面积区域是傅立叶存在变换。

z变换求反变换的部分分式法有函数能够计算:[r,p,C] = residuez(b,a)

当中b和a为按z-1升幂序列排列的多项式的分子和坟墓的系数向量。

r为各个根的留数向量;p为极点向量。

C先无论。

也能够用h = impz(b,a,N)。这个之前有介绍过,就是已知多项式分子分母求h(n)的。也就是说能够来求反变换。

至于求解差分方程。之前介绍过filter(b,a,x,xic)。xic是初始条件输入序列。

当中初始条件计算:xic = filtic(b,a,Y,X)

b和a是分子分母系数数组。

Y和X是初始条件数组。Y=[y(-1),y(-2),…]。X=[x(-1),x(-2)…]。

接下来讲讲z平面上的谱分析。

之前学过DTFT的几何画法。能够发现,假设极点靠单位圆非常近。频率特性在靠近极点附近会出现大的谐振峰。分母迅速减小。

因为稳定性要求,极点要在单位圆内。这样阐释的都是负相移。

当零点也在单位圆内,系统的负相移最小(零点可产生正相移抵消),称最小相位系统。

非单位圆周上的频谱分析。

比如语音信号处理中,经常须要知道极点所相应的频率。

假设极点里单位圆较远。则单位圆上的频谱就非常平滑。

假设使採样点轨迹沿一条接近这些极点的弧线或圆周进行,则採样结果会在极点相应的频率上出现明显的尖峰。

关于理想滤波器,其脉冲响应是sa函数。为了因果,仅仅能截取n>=0部分。

考虑到线性相位要求,截取的序列必须对称。

为了使更接近于理想情况,应该尽可能添加延迟时间,加大截取长度(阶数)。

截取的序列越短。幅频特性与理想情况区别越大。

截取的序列若是对称的,则相频为线性。若不正确称,相频特性则非线性。

用零极点分析滤波器。

规律是:离零点越近的频率,幅度越小。

离极点越近的频率,幅度越大。

由z = eiw,z=-1离低频最远。因此取零点z=-1能够得到更高的低频幅度。

z=-1后,对一阶低通滤波器,通带宽度与极点a的关系近似是wp = 1-a。注意wp是数字频率。

二阶则更加灵活。为了滤波或者陷波,能够直接把零点配置在这个角频率的单位圆上ejw0。

同理,梳状滤波器就是把零点均匀分布在单位圆上。极点位置非常靠近零点位置。能将陷波特性做的非常窄。

只是陷阱坏相频特性,通常级联全通滤波器校正。

版权声明:本文博客原创文章,博客,未经同意,不得转载。

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/117486.html原文链接:https://javaforall.cn

【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛

【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...

(0)


相关推荐

  • 计算机xp考试模块,职称计算机考试XP模块题库

    计算机xp考试模块,职称计算机考试XP模块题库一、WindowsXP的特点、启动和退出1、要求:将你的计算机转入待机状态:开始→关闭计算机→待机2、要求:重新启动你的计算机:开始→关闭计算机→重新启动3、要求:正常退出WindowsXP系统:开始→关闭计算机→关闭4、要求:切换当前用户为DCH:开始→注销→切换用户→点“DCH已登录”5、要求:对当前用户进行注销:开始→注销→注销二、Windows的界面(一)1、要求:利用“索引”查找关于…

  • OpenCV学习之路–5–OpenCV3.4.10的ARM版本移植到开发板

    OpenCV学习之路–5–OpenCV3.4.10的ARM版本移植到开发板开发板:迅为IMX6Q移植QTE5.7编译好的ARM版本OpenCV3.4.10文件:OpenCV3.4.10ARM版编译好的OpenCV依赖库文件:1.将/usr/local/arm/opencv-arm/lib/下的库拷贝到开发板相同目录及/lib/下mkdir/home/topeet/iMX6Q/qt/usr/local/arm/opencv-armcd/usr/local/arm/opencv-arm/cp-r*/home/topeet/iM…

    2022年10月14日
  • datagrip 2021 mac 激活码(在线激活)

    datagrip 2021 mac 激活码(在线激活),https://javaforall.cn/100143.html。详细ieda激活码不妨到全栈程序员必看教程网一起来了解一下吧!

  • 安卓的shell命令_android执行linux命令

    安卓的shell命令_android执行linux命令adbdevices查询电脑已连接的设备adbshellpmlistpackages列出目标设备中已安装的应用程序包adbshellpmlistpackages-f列出目标设备中已安装的应用程序包的具体位置adbuninstallxxx卸载或删除的应用包xxxadbpull/data/app/com.tencent.tbs-1/base…

    2022年10月10日
  • java线程池 面试题(精简)

    java线程池 面试题(精简)什么是线程池?线程池是一种多线程处理形式,处理过程中将任务提交到线程池,任务的执行交由线程池来管理。如果每个请求都创建一个线程去处理,那么服务器的资源很快就会被耗尽,使用线程池可以减少创建和销毁线程的次数,每个工作线程都可以被重复利用,可执行多个任务。 为什么要使用线程池?创建线程和销毁线程的花销是比较大的,这些时间有可能比处理业务的时间还要长。这样频繁的创建线程和销毁线程,再…

  • webstorm整理代码格式快捷键_电脑上的快捷键有哪些

    webstorm整理代码格式快捷键_电脑上的快捷键有哪些centOS下webstorm格式化代码的快捷键Ctrl+Shift+lwindows下webstorm格式化代码的快键键Ctrl+Alt+lmac下webstorm格式化代码的快捷键Option+Command+l

发表回复

您的电子邮箱地址不会被公开。

关注全栈程序员社区公众号