随着MapReduce job实现去加重,多种输出文件夹

随着MapReduce job实现去加重,多种输出文件夹

大家好,又见面了,我是全栈君,今天给大家准备了Idea注册码。

总结以往的工作中遇到的一个问题。

背景:

操作和维护与scribe从apacheserver一再被推到日志记录,所以在这里ETL处理正在进行的重。有根据业务的输出类型是用于多文件夹一个需求。方便挂分区,使用回。

这两种需求都没有问题分开处理,一个mapreduce里完毕,须要一点技巧。

1、map输入数据,经过一系列处理。输出时:

 if(ttype.equals("other")){
        	file = (result.toString().hashCode() & 0x7FFFFFFF)%400;
        }else if(ttype.equals("client")){
        	file = (result.toString().hashCode() & 0x7FFFFFFF)%260;
        }else{
        	file = (result.toString().hashCode()& 0x7FFFFFFF)%60;
        }
        tp = new TextPair(ttype+"_"+file, result.toString());
        
        context.write(tp, valuet);

 valuet是空的,什么都没有。

 我这里有三个类型。other,client,wap,分别代表日志来源平台。要按他们分文件夹输出。
 result就是整条记录。

file得到的是终于输出文件名称,hash。位操作,取模是为了输出均衡。

 map的输出结构<key,value> =(ttype+”_”+file,result.toString())
 这样做的目的是:保证同样的记录得到同样的key,同一时候还要保存类型。partition要按textPair的left,也就是这个key,
 保证了后面要写到同一个输出文件的全部记录都到同一个reduce里去。一个reduce能够写多个输出文件。可是一个输出文件不能来自多个reduce,原因非常明了。
 这种话大概400+260+60=720个输出文件,每一个文件数据量大概差点儿相同,job的reduce数我这里设置的240,这个数连同取模400,260,60都是依据我的数据量来定的,来尽量避免reduce的数据倾斜。

 
 
2、reduce方法去重:
 

 public void reduce(TextPair key, Iterable<Text> values, Context context) throws IOException, InterruptedException
    {
        
        rcfileCols = getRcfileCols(key.getSecond().toString().split("\001"));
        context.write(key.getFirst(), rcfileCols);


    }

    

  不用迭代,对同样的key组。仅仅输出一次。注意这里job用到的比較器,一定不能是FirstComparator,而是整个textpair对的比較。(先比較left。再比較right)

  

  我的程序里输出文件格式是rcfile。

  

3、多文件夹输出:

 job.setOutputFormatClass(WapApacheMutiOutputFormat.class);
   
public class WapApacheMutiOutputFormat extends RCFileMultipleOutputFormat<Text, BytesRefArrayWritable> {
	Random r = new Random();
	protected String generateFileNameForKeyValue(Text key, BytesRefArrayWritable value,
			Configuration conf) {
		
		    String typedir = key.toString().split("_")[0];


			return typedir+"/"+key.toString();


	}
}

这里的RCFileMultipleOutputFormat是自己继承自FileOutputFormat 自己写的。主要实现了recordWriter。

终于输出去重的,分文件夹的数据文件。

理解的关键,主要是partition key设计。reduce原则。

版权声明:本文博客原创文章,博客,未经同意,不得转载。

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/117394.html原文链接:https://javaforall.cn

【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛

【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...

(0)


相关推荐

发表回复

您的电子邮箱地址不会被公开。

关注全栈程序员社区公众号