《github一天,一个算术题》:堆算法接口(堆排序、堆插入和堆垛机最大的价值,并删除)

《github一天,一个算术题》:堆算法接口(堆排序、堆插入和堆垛机最大的价值,并删除)

大家好,又见面了,我是全栈君,今天给大家准备了Idea注册码。

阅览、认为、编写代码!

/*********************************************
 * copyright@hustyangju
 * blog: http://blog.csdn.net/hustyangju
 * 题目:堆排序实现,另外实现接口:取堆最大值并删除、堆插入
 * 思路:堆是在顺序数组原址上实现的。利用全然二叉树的性质。更具最大堆和最小堆的定义实现的。
 * 经典应用场景:内存中堆数据管理
 * 空间复杂度:堆排序是在原址上实现的,为0
 * 时间复杂度:堆排序为O(n lgn) ,取最值O(1)。插入最坏为O(lgn)
*********************************************/
#include <iostream>
#include <algorithm>

using namespace::std;

//对堆排序实现类的定义
class HeapSort
{
 public:
     HeapSort(int *pArray , int nArraySize);//constructor
     ~HeapSort();//destructor
 private:
    int *m_pA;//points to an array
    int m_nHeapSize;//stands for the size
 public:
    void BuildMaxHeap(); //build a heap
    void Sort();//建一个最大堆并排序。依照顺序(由小到大)放在原数组
    int  PopMaxHeap();//取最大堆的最大值
    void InsertMaxHeap(int a);//插入一个新值到最大堆,事实上就是在元素尾部增加一个值,再维护最大堆的性质
    void print();//顺序输出数组
 protected:
    int LeftChild(int node);//取左孩子下标
    int RightChild(int node);//取右孩子下标
    int Parent(int node);//取父节点下标
    void MaxHeapify(int nIndex);//justify the heap
 };

//构造函数初始化
HeapSort::HeapSort( int *pArray, int nArraySize )
{
     m_pA = pArray;
     m_nHeapSize = nArraySize;
}

//析构函数
HeapSort::~HeapSort()
{
}

//取左孩子下标。注意沿袭数组从0開始的习惯
int HeapSort::LeftChild(int node)
{
   return 2*node + 1;// the array starts from 0
}

//取右孩子下标
int HeapSort::RightChild(int node)
{
     return 2*node + 2;
}

//取父节点下标
int HeapSort::Parent(int node)
{
   return (node-1)/2 ;
}

//利用递归维护最大堆的性质。前提是已经建好最大堆。仅仅对变动的结点调用该函数
void HeapSort::MaxHeapify(int nIndex)
{
     int nLeft = LeftChild(nIndex);
     int nRight = RightChild(nIndex);

     int nLargest = nIndex;

     if( (nLeft < m_nHeapSize) && (m_pA[nLeft] > m_pA[nIndex]) )
         nLargest = nLeft;

     if( (nRight < m_nHeapSize) && (m_pA[nRight] > m_pA[nLargest]) )
        nLargest = nRight;

     if ( nLargest != nIndex )//假设有结点变动才继续递归
    {
         swap<int>(m_pA[nIndex], m_pA[nLargest]);
         MaxHeapify(nLargest);
     }
 }

//建造最大堆,思路:对于一个全然二叉树,子数组A[int((n-1)/2)+1]~A[n-1]为叶子结点
//A[0]~A[int((n-1)/2)]为非叶子结点。从下到上,从最后一个非叶子结点開始维护最大堆的性质
 void HeapSort::BuildMaxHeap()
 {
     if( m_pA == NULL )
         return;

     for( int i = (m_nHeapSize - 1)/2; i >= 0; i-- )
    {
         MaxHeapify(i);
     }
}

 //不断取最大堆的最大值A[0]与最后一个元素交换,将最大值放在数组后面。顺序排列数组
 void HeapSort::Sort()
{
     if( m_pA == NULL )
         return;
     if( m_nHeapSize == 0 )
        return;
    for( int i = m_nHeapSize - 1; i > 0; i-- )
     {
        swap<int>(m_pA[i], m_pA[0]);
         m_nHeapSize -= 1;//这个表达式具有破坏性!!

! MaxHeapify(0); }} //取出最大值,并在堆中删除 int HeapSort::PopMaxHeap() { /*if( m_pA == NULL ) return ; if( m_nHeapSize == 0 ) return ;*/ int a= m_pA[0]; m_pA[0]=m_pA[m_nHeapSize-1]; m_nHeapSize -= 1; MaxHeapify(0); return a; } //插入一个值。思路:放在数组最后面(符合数组插入常识),再逐层回溯维护最大堆的性质 void HeapSort::InsertMaxHeap(int a) { /* if( m_pA == NULL ) return; if( m_nHeapSize == 0 ) return; */ m_nHeapSize += 1; m_pA[m_nHeapSize-1]=a; int index=m_nHeapSize-1; while(index>0) { if(m_pA[index]>m_pA[Parent(index)]) { swap(m_pA[index], m_pA[Parent(index)]); index=Parent(index); } else index=0;//注意这里。某一层已经满足最大堆的性质了,就不须要再回溯了 } } //顺序输出数组 void HeapSort::print() { for(int i=0;i<m_nHeapSize;i++) cout<<m_pA[i]<<" "; cout<<endl; } int main() { int a[10]={6,5,9,8,1,0,3,2,7,4}; //int max; cout<<"input an array::"<<endl; for(int i=0;i<10;i++) cout<<a[i]<<" "; cout<<endl; HeapSort myHeap(a,10); myHeap.BuildMaxHeap(); cout<<"pop the max number:"<<endl; cout<<"the max="<<myHeap.PopMaxHeap()<<endl; cout<<"after pop:"<<endl; myHeap.print(); myHeap.InsertMaxHeap(11); cout<<"insert a number and sort:"<<endl; myHeap.Sort(); // myHeap.print(); for(int i=0;i<10;i++) cout<<a[i]<<" "; cout<<endl; }

測试结果:

《github一天,一个算术题》:堆算法接口(堆排序、堆插入和堆垛机最大的价值,并删除)

版权声明:本文博主原创文章。博客,未经同意,不得转载。

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/117131.html原文链接:https://javaforall.cn

【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛

【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...

(0)


相关推荐

  • 用docker部署jar包_docker run 参数

    用docker部署jar包_docker run 参数小小总结一、思路1、将docker容器中的指定文件夹挂载到宿主机上,更新jar包只需上传到宿主机指定路径,方便更新2、利用bash文件运行jar包,并构建该bash的镜像,代替构建直接运行jar包的镜像,利于镜像与jar包解耦。例如,app-1.0.0.jar升级到app-2.0.0.jar,只须更改bash文件的内容,而无须构建新的镜像。二、准备工作1、创建存放docker配置文件、jar包的文件夹在宿主机上,创建文件夹:/home/admin/app,用于存放bash文件和jar包。然

  • cmpp20协议对接「建议收藏」

    cmpp20协议对接「建议收藏」最近公司派任务,让完成cmpp20协议的ps模块。这里总结下期间遇到的问题。1、cmpp20的协议里没有report实体,其实report是和deliver在一起的。deliver里有一个字段Registered_Delivery,0代表deliver,1代表report。同时,当deliver代表report时,MessageContent里面是msgid、Stat、Submit_time、Do…

    2022年10月27日
  • Android中实现二级菜单

    Android中实现二级菜单公司项目里的需求,商城的左下角,要求有分类的Menu。看图:1.当点击一级分类,修改二级菜单里面的内容。2.同时一级菜单里的背景变为右边有白色三角的背景。3.当点击二级菜单的条目时候,Popupwindow消失,并且界面更新对应条目的商品数据。我的实现思路是:左下角弹出Popupwindow,里面使用两个ListView实现。我的Demo的效果:

  • 使用一个运放滤三次谐波 二阶有源带通滤波器的电路设计及波形效果

    使用一个运放滤三次谐波 二阶有源带通滤波器的电路设计及波形效果本文主要讲无限增益多路反馈有源带通滤波器的实现,工程实作,非理论知识,关于其他方法简略提,不做细究

  • js深拷贝和浅拷贝具体使用区别_es6深拷贝和浅拷贝

    js深拷贝和浅拷贝具体使用区别_es6深拷贝和浅拷贝“深拷贝” 与 “浅拷贝” 的区别,JS实现深浅拷贝的几种方法

  • 《算法设计与分析》期末不挂科的原因_算法设计与分析重点

    《算法设计与分析》期末不挂科的原因_算法设计与分析重点考前知识点整理算法分析基础算法的定义算法正确性算法的性质程序的定义程序与算法的区别算法设计和分析的步骤复杂度分析算法的时间复杂性算法渐近复杂性渐近分析的记号渐近上界记号渐近下界记号非紧上界记号非紧下界记号紧渐近界记号意义算法分析中常见的复杂性函数我们学校开设的这门课,过于理论,实践太少,考试不会太难,一起学习,一起不挂科!但是算法平时一定要练哦!加油!算法分析基础算法的定义算法是指解决问题的一种方法或一个过程。算法是若干指令的有穷序列。算法正确性对每一个输入实例算法都能终止,并给出

发表回复

您的电子邮箱地址不会被公开。

关注全栈程序员社区公众号