彩色图像–伪彩处理 灰度图转伪彩色图像

彩色图像–伪彩处理 灰度图转伪彩色图像

大家好,又见面了,我是全栈君。

学习DIP第68天
转载请标明本文出处:http://blog.csdn.net/tonyshengtan ,出于尊重文章作者的劳动,转载请标明出处!文章代码已托管,欢迎共同开发:https://github.com/Tony-Tan/DIPpro

开篇废话

观察了一下冈萨雷斯的书,发现彩色图像处理仅仅用了一章进行介绍,原因分析了一下,后来发现,好像别的介绍的也不多,得出一个结论。冈萨雷斯这本书仅仅能作为一部纲领性的介绍。它基本涵盖了图像处理的基础知识。可是假设想使用某种方向作为工作的话。须要继续找很多其它专业的书和开源项目来学习。

还是像我之前抱怨的那样。每次看一本书之前都认为自己看完了会变得超级厉害,但每次看完一本书以后反而会认为自己像个傻瓜一样。须要很多其它的书来学习,如此循环,这一生都不会幸福了。盗图一张,与各位共勉


这里写图片描写叙述

原理

说到伪彩色图像,与其相应的是真彩色,以下介绍下其差别和性质。
我们知道可以观察出颜色的光的波长范围是有限的,仅仅有那么一小段,换句话说也就是说有一大段光,仅仅有一小段有颜色。其它都是灰度的,但人类视觉有一个特点就是,仅仅能分辨出二十几种灰度,也就是说採集到的灰度图像分辨率超级高。有一千个灰度级,但非常遗憾。人们仅仅能看出二十几个,也就是说信息损失了五十倍,但人类视觉对彩色的分辨能力相当强,可以分辨出几千种色度。
在从採集的角度说下伪彩和真彩色,伪彩色原始图像是灰度图像
灰度图像的来源:

  1. 单通道相机或其它传感器(比方CT用的平板)採集到的都是灰度图,这里包含使用单通道採集的频率高于可见光的频率的电磁波,可见光,低于可见光频率的电磁波。


    这里写图片描写叙述

    图中红色框内为不可见光,没有颜色。所以他们一定是灰度图,须要时要进行伪彩色处理。

  2. 使用多通道採集设备採集的不可见光,这种图像有时候是单通道的。就是1中所说的,也有可能是多通道,不如卫星就有可能,红外。可见光,还有其它不可见光採集设备。这种多通道灰度图有时候须要进行伪彩处理。

真彩色图的来源:
用多通道採集设备,多为相机来採集可见光,这样得到的是多通道真彩色图像。

算法分析

对于单通道灰度图转换成伪彩图像的方法是将一种灰度映射为一种颜色。而映射方式不唯一。可以依据须要自行设定,以下的代码使用的算法是我自己想出来的,使用到了HSV色彩空间。并将当中的饱和度和亮度设为1.0,色相使用灰度0到255映射到0°到270°:


这里写图片描写叙述

代码

void Gray2Color(double *src,RGB* dst,int width,int height,int type){
    HSV* temp=(HSV*)malloc(sizeof(HSV)*width*height);
    for(int i=0;i<width*height;i++){
        double gray_value=src[i];
        if(type==HIGHVALUE_EQU_RED)
            temp[i].c1=HSVMAX-GRAY2HSV*gray_value;
        else if(type==LOWVALUE_EQU_RED)
            temp[i].c1=GRAY2HSV*gray_value;
        temp[i].c2=1.0;
        temp[i].c3=1.0;
    }
    HSV2RGB(temp, dst, width, height);
    free(temp);
}

效果分析

灰度渐进图:


这里写图片描写叙述


这里写图片描写叙述


这里写图片描写叙述

MacBook Pro x光扫描图


这里写图片描写叙述


这里写图片描写叙述


这里写图片描写叙述

卫星地形图:


这里写图片描写叙述


这里写图片描写叙述


这里写图片描写叙述

星云:


这里写图片描写叙述


这里写图片描写叙述


这里写图片描写叙述

总结

伪彩色图乡相对灰度图像可以识别很多其它的细节,可分辨性较强。

并且转换方式灵活。可以依据须要自行设计转换函数。或者自制映射表。
待续。。。

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/116312.html原文链接:https://javaforall.cn

【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛

【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...

(0)
blank

相关推荐

  • 静态路由介绍_静态路由下一跳地址类型

    静态路由介绍_静态路由下一跳地址类型网络上通过各种设备传递数据,最常见的就是路由器和交换机。本篇介绍路由器的静态路由协议。先简要说一下路由条目和路由表(熟悉的可略过):一个数据包从源IP地址到目标IP地址间可能穿过多个路由器,也可能有多条路径通往目标IP地址。那路由器收到数据后,如何知道哪个端口能通往目标地址呢?如果多个端口都可通往目标地址,选择用哪个端口才是最优路径呢?依据的就是路由表。路由表就是路由器的灵魂,是多个路由条目的…

  • Java反射访问私有成员

    Java反射访问私有成员

  • 第十一届GPCT杯大学生程序设计大赛完美闭幕

    第十一届GPCT杯大学生程序设计大赛完美闭幕

  • Django(61)认证组件源码分析

    Django(61)认证组件源码分析认证组件源码入口APIView下的dispatch下的self.initial(request,*args,**kwargs),源码如下:definitial(self,request,

  • 京东金融大数据竞赛猪脸识别(8)- 识别方法之四

    京东金融大数据竞赛猪脸识别(8)- 识别方法之四除了softmax层构建的深度网络,Matlab还有一个简单的构建数据分类的函数,那就是patternnet,其用法类似。可以直接对图像特征数据处理,也可以对图像集处理。代码如下:%exam1.m用训练图像特征构建深度网络并计算测试图像得分clear;load(‘JDPig_mlhmslbp_spyr.mat’);m=numel(classe_name);n=length(y)…

  • 目标检测的目的_小目标检测问题

    目标检测的目的_小目标检测问题我们在评价一个目标检测算法的“好坏”程度的时候,往往采用的是pascalvoc2012的评价标准mAP。网上一些资料博客参差不齐,缺乏直观易懂的正确说明。希望这篇博文能够给大家一点帮助。mAP历史目标检测的mAP计算方式在2010年的voc上发生过变化,目前基本都是采用新的mAP评价标准。(我有个小疑问就是明明是2010年修改的,但是貌似现在大家都称这种计算方式为2012)所…

    2022年10月12日

发表回复

您的电子邮箱地址不会被公开。

关注全栈程序员社区公众号