E. Riding in a Lift(Codeforces Round #274)「建议收藏」

E. Riding in a Lift(Codeforces Round #274)

大家好,又见面了,我是全栈君。

E. Riding in a Lift
time limit per test

2 seconds

memory limit per test

256 megabytes

input

standard input

output

standard output

Imagine that you are in a building that has exactly n floors. You can move between the floors in a lift. Let’s number the floors from bottom to top with integers from 1 to n. Now you’re on the floor number a. You are very bored, so you want to take the lift. Floor number b has a secret lab, the entry is forbidden. However, you already are in the mood and decide to make k consecutive trips in the lift.

Let us suppose that at the moment you are on the floor number x (initially, you were on floor a). For another trip between floors you choose some floor with number y (y ≠ x) and the lift travels to this floor. As you cannot visit floor b with the secret lab, you decided that the distance from the current floor x to the chosen y must be strictly less than the distance from the current floor x to floor b with the secret lab. Formally, it means that the following inequation must fulfill: |x - y| < |x - b|. After the lift successfully transports you to floor y, you write down number y in your notepad.

Your task is to find the number of distinct number sequences that you could have written in the notebook as the result of k trips in the lift. As the sought number of trips can be rather large, find the remainder after dividing the number by 1000000007 (109 + 7).

Input

The first line of the input contains four space-separated integers nabk (2 ≤ n ≤ 50001 ≤ k ≤ 50001 ≤ a, b ≤ na ≠ b).

Output

Print a single integer — the remainder after dividing the sought number of sequences by 1000000007 (109 + 7).

Sample test(s)
input
5 2 4 1

output
2

input
5 2 4 2

output
2

input
5 3 4 1

output
0

Note

Two sequences p1, p2, …, pk and q1, q2, …, qk are distinct, if there is such integer j (1 ≤ j ≤ k), that pj ≠ qj.

Notes to the samples:

  1. In the first sample after the first trip you are either on floor 1, or on floor 3, because |1 - 2| < |2 - 4| and |3 - 2| < |2 - 4|.
  2. In the second sample there are two possible sequences: (1, 2)(1, 3). You cannot choose floor 3 for the first trip because in this case no floor can be the floor for the second trip.
  1. In the third sample there are no sought sequences, because you cannot choose the floor for the first trip.


上次的cf今天才补题o(╯□╰)o,给n层楼。在a层開始,不能在b层停,且当在x层去y层时。|x - y| < |x - b|,求运行k
 
次的方案数。

有两种情况,dp[i][j],i为第i次,j为当前停的层数。


 当a<b时,此时全部的x不会超过b,当第i次停在j层。第i-1次肯定在[0,(b+j-1)/2],左端点不难想到,右端点推导过程:

设第i-1次停在x层。则第i层全部大于x小于b的点都能够取。我们仅仅考虑小于x的点。则x-j<=b-x-1,

整理得:   x<=(b+j-1)/2; 所以转移方程为:dp[i][j]=(sum[i-1][(j+b-1)/2]-dp[i-1][j]+mod)%mod;

当a>b时,同理得
dp[i][j]=((sum[i-1][n]-sum[i-1][(j+b)/2]+mod)%mod-dp[i-1][j]+mod)%mod;

代码:

#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
using namespace std;
const int maxn=5000+100;
const int mod=1000000000+7;
int dp[maxn][maxn];
int sum[maxn][maxn];
int n;
void getsum(int x)
{
    for(int i=1;i<=n;i++)
    {
    sum[x][i]=(sum[x][i-1]+dp[x][i])%mod;
  //  printf("%I64d\n",sum[x][i]);
    }
}
int main()
{
    int a,b,k;
    scanf("%d%d%d%d",&n,&a,&b,&k);
    memset(dp,0,sizeof(dp));
    memset(sum,0,sizeof(sum));
    dp[0][a]=1;
    if(a<b)
    {
        getsum(0);
       for(int i=1;i<=k;i++)
       {
        for(int j=1;j<b;j++)
        {
           dp[i][j]=(sum[i-1][(j+b-1)/2]-dp[i-1][j]+mod)%mod;
          // printf("%I64d ",dp[i][j]);
        }
      // printf("\n");
        getsum(i);
       }
    }
    else
    {
        getsum(0);
        for(int i=1;i<=k;i++)
        {
            for(int j=b+1;j<=n;j++)
            {
                //printf("%d %d\n",sum[i-1])
                dp[i][j]=((sum[i-1][n]-sum[i-1][(j+b)/2]+mod)%mod-dp[i-1][j]+mod)%mod;
               // printf("%d ",dp[i][j]);
            }
            getsum(i);
        }
    }
    long long ans=0;
    for(int i=1;i<=n;i++)
    {
    ans=(ans+dp[k][i])%mod;
    //printf("%d ",dp[k][i]);
    }
    printf("%I64d\n",ans);
    return 0;
}

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/116125.html原文链接:https://javaforall.cn

【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛

【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...

(0)


相关推荐

  • git config配置

    git config配置

  • java判断一个数是否为质数的代码_逻辑代数最小项

    java判断一个数是否为质数的代码_逻辑代数最小项给定一个长度为 N 的数列 A,以及 M 条指令,每条指令可能是以下两种之一:C l r d,表示把 A[l],A[l+1],…,A[r] 都加上 d。Q l r,表示询问数列中第 l∼r 个数的和。对于每个询问,输出一个整数表示答案。输入格式第一行两个整数 N,M。第二行 N 个整数 A[i]。接下来 M 行表示 M 条指令,每条指令的格式如题目描述所示。输出格式对于每个询问,输出一个整数表示答案。每个答案占一行。数据范围1≤N,M≤105,|d|≤10000,|A[i]|≤1

  • php备份数据库类分享

    php备份数据库类分享

    2021年10月13日
  • QTreeView使用总结13,自定义model示例,大大优化性能和内存[通俗易懂]

    QTreeView使用总结13,自定义model示例,大大优化性能和内存[通俗易懂]1,简介前面简单介绍过Qt的模型/视图框架,提到了Qt预定义的几个model类型:QStringListModel:存储简单的字符串列表QStandardItemModel:可以用于树结构的存储,提供了层次数据QFileSystemModel:本地系统的文件和目录信息QSqlQueryModel、QSqlTableModel、QSqlRelati…

  • goland 2022.01 激活【2022最新】

    (goland 2022.01 激活)好多小伙伴总是说激活码老是失效,太麻烦,关注/收藏全栈君太难教程,2021永久激活的方法等着你。IntelliJ2021最新激活注册码,破解教程可免费永久激活,亲测有效,下面是详细链接哦~https://javaforall.cn/100143.html1TCF2R91JZ-eyJsaWNlbnNlSWQi…

  • PyCharm:设置是否在SciView中绘图

    PyCharm:设置是否在SciView中绘图有时候用PyCharm写代码,特别是用到matplotlib等库进行绘图时,图像常常会绘制在右侧的SciView窗口中,这样往往会遮挡住图像,特别是你的屏幕如果比较小的话,遮挡就比较麻烦了~~~特别是以下几种情况:①你用两个屏幕debug代码时,一个用来写代码,一个用来绘图,大屏,爽啊!②希望知道每一句代码都在图上做了什么改动,以及动态查看图是如何被绘制出来的。③图像较大而屏幕较小……

发表回复

您的电子邮箱地址不会被公开。

关注全栈程序员社区公众号