Hive索引

Hive索引

大家好,又见面了,我是全栈君。

1、        Hive索引概述

Hive的索引目的是提高Hive表指定列的查询速度。

没有索引时。类似’WHERE tab1.col1 = 10′ 的查询。Hive会载入整张表或分区。然后处理全部的rows,可是假设在字段col1上面存在索引时。那么仅仅会载入和处理文件的一部分。

与其它传统数据库一样。添加索引在提升查询速度时。会消耗额外资源去创建索引和须要很多其它的磁盘空间存储索引。

Hive 0.7.0版本号中,添加了索引。Hive 0.8.0版本号中添加了bitmap索引。

2、        索引相关的配置參数

hive.index.compact.file.ignore.hdfs

Default Value: false

Added In: Hive 0.7.0 withHIVE-1889

在索引文件里存储的hdfs地址将在执行时被忽略,假设开启的话;假设数据被迁移。那么索引文件依旧可用,默认是false

 

hive.optimize.index.filter

Default Value: false

Added In: Hive 0.8.0 withHIVE-1644

是否自己主动使用索引, 默认是false

 

hive.optimize.index.filter.compact.minsize

Default Value: 5368709120

Added In: Hive 0.8.0 withHIVE-1644

压缩索引自己主动应用的最小输入大小

 

 

 

hive.optimize.index.filter.compact.maxsize

Default Value: -1

Added In: Hive 0.8.0 withHIVE-1644

压缩索引自己主动应用的最大输入大小,负值代表正无穷

 

hive.index.compact.query.max.size

Default Value: 10737418240

Added In: Hive 0.8.0 withHIVE-2096

一个使用压缩索引做的查询能取到的最大数据量。默认是10737418240 个byte;负值代表无穷大;

 

hive.index.compact.query.max.entries

Default Value: 10000000

Added In: Hive 0.8.0 withHIVE-2096

使用压缩索引查询时能读到的最大索引项数,默认是10000000;负值代表无穷大;

 

hive.exec.concatenate.check.index

Default Value: true

Added In: Hive 0.8.0 withHIVE-2125

假设设置为true,那么在做ALTER TABLE tbl_name CONCATENATE on a table/partition(有索引) 操作时,抛出错误;能够帮助用户避免index的删除和重建;

 

hive.optimize.index.groupby

Default Value: false

Added In: Hive 0.8.1 withHIVE-1694

 

 

 

hive.index.compact.binary.search

Default Value: true

Added In: Hive 0.8.1with HIVE-2535

在索引表中是否开启二分搜索进行索引项查询,默认是true。

 

3、        索引演示样例

注意:在Hive 0.12.0以及之前版本号中,索引名称在create index和drop index语句中是大写和小写敏感的。然而,alter index 须要一个小写的索引名字。

此bug在Hive 0.13.0解决,此版本号開始使索引名字大写和小写不敏感。

对于Hive 0.13.0之前的版本号,最好使用小写的索引名字。

以下介绍索引的常见使用方法:

A、       Create/build,show和drop index

create index table01_index ontable table01(column2) as ‘COMPACT’ with deferred rebuild;

show index on table01;

drop index table01_index ontable01;

 

B、       Create then build。show formatted和drop index

create index table02_index ontable table02(column3) as ‘compact’ with deferred rebuild;

alter index table02_index ontable02 rebuild;

show formatted index ontable02;

drop index table02_index ontable02;

 

C、       创建bitmap索引,build,show 和drop

createindex table03_index on table table03 (column4) as ‘bitmap’ with deferred rebuild;

alter index table03_index ontable03 rebuild;

show formatted index ontable03;

drop index table03_index on table03;

D、       在一张新表上创建索引

createindex table04_index on table table04 (column5) as ‘compact’with deferred rebuild in tabletable04_index_table;

E、        创建索引,存储格式为RCFile

create index table05_index ontable table05 (column6) as ‘compact’ with deferred rebuildstored as rcfile;

F、        创建索引。存储格式为TextFile

create index table06_index ontable table06 (column7) as ‘compact’ with deferredrebuild row format delimited fields terminated by ‘\t’ stored as textfile;

G、       创建带有索引属性的索引

create index table07_index ontable table07 (column8) as ‘compact’ with deferred rebuild idxproperties(“prop1″=”value1”, “prop2″=”value2”);

H、       创建带有表属性的索引

create index table08_index ontable table08 (column9) as ‘compact’ withdeferred rebuild tblproperties(“prop3″=”value3”, “prop4″=”value4”);

I、        假设索引存在,则删除

drop index if exists table09_indexon table09;

J、        在分区上重建索引

alter index table10_index on table10partition (columnx=’valueq’, columny=’valuer’) rebuild;

4、        索引測试

(1)  查询表中行数

hive (hive)> select count(1)from userbook;

4409365

(2)  表中未创建索引前查询

hive (hive)> select * fromuserbook where book_id = ‘15999998838’;

Query ID =hadoop_20150627165551_595da79a-0e27-453b-9142-7734912934c4

Total jobs = 1

Launching Job 1 out of 1

Number of reduce tasks is setto 0 since there’s no reduce operator

Starting Job =job_1435392961740_0012, Tracking URL =http://gpmaster:8088/proxy/application_1435392961740_0012/

Kill Command =/home/hadoop/hadoop-2.6.0/bin/hadoop job -kill job_1435392961740_0012

Hadoop job information forStage-1: number of mappers: 2; number of reducers: 0

2015-06-27 16:56:04,666 Stage-1map = 0%,  reduce = 0%

2015-06-27 16:56:28,974 Stage-1map = 50%,  reduce = 0%, Cumulative CPU4.36 sec

2015-06-27 16:56:31,123 Stage-1map = 78%,  reduce = 0%, Cumulative CPU6.21 sec

2015-06-27 16:56:34,698 Stage-1map = 100%,  reduce = 0%, Cumulative CPU7.37 sec

MapReduce Total cumulative CPUtime: 7 seconds 370 msec

Ended Job =job_1435392961740_0012

MapReduce Jobs Launched:

Stage-Stage-1: Map: 2   Cumulative CPU: 7.37 sec   HDFS Read: 348355875 HDFS Write: 76 SUCCESS

Total MapReduce CPU Time Spent:7 seconds 370 msec

OK

userbook.book_id    userbook.book_name    userbook.author      userbook.public_date     userbook.address

15999998838     uviWfFJ KwCrDOA    2009-12-27  3b74416d-eb69-48e2-9d0d-09275064691b

Time taken: 45.678 seconds, Fetched: 1 row(s)

 

(3)  创建索引

hive (hive)> create indexuserbook_bookid_idx on table userbook(book_id) as ‘COMPACT’ WITH DEFERREDREBUILD;

(4)  创建索引后再运行查询

hive (hive)> select * fromuserbook where book_id = ‘15999998838’;

Query ID =hadoop_20150627170019_5bb5514a-4c8e-4c47-9347-ed0657e1f2ff

Total jobs = 1

Launching Job 1 out of 1

Number of reduce tasks is setto 0 since there’s no reduce operator

Starting Job =job_1435392961740_0013, Tracking URL = http://gpmaster:8088/proxy/application_1435392961740_0013/

Kill Command =/home/hadoop/hadoop-2.6.0/bin/hadoop job -kill job_1435392961740_0013

Hadoop job information forStage-1: number of mappers: 2; number of reducers: 0

2015-06-27 17:00:30,429 Stage-1map = 0%,  reduce = 0%

2015-06-27 17:00:54,003 Stage-1map = 50%,  reduce = 0%, Cumulative CPU7.43 sec

2015-06-27 17:00:56,181 Stage-1map = 78%,  reduce = 0%, Cumulative CPU9.66 sec

2015-06-27 17:00:58,417 Stage-1map = 100%,  reduce = 0%, Cumulative CPU10.83 sec

MapReduce Total cumulative CPUtime: 10 seconds 830 msec

Ended Job =job_1435392961740_0013

MapReduce Jobs Launched:

Stage-Stage-1: Map: 2   Cumulative CPU: 10.83 sec   HDFS Read: 348356271 HDFS Write: 76 SUCCESS

Total MapReduce CPU Time Spent:10 seconds 830 msec

OK

userbook.book_id    userbook.book_name    userbook.author      userbook.public_date     userbook.address

15999998838     uviWfFJ KwCrDOA    2009-12-27  3b74416d-eb69-48e2-9d0d-09275064691b

Time taken: 40.549 seconds, Fetched: 1 row(s)

能够看到创建索引后,速度还是稍快一点的。

事实上对于这样的简单的查询,通过我们的设置,能够不用启动Map/Reduce的,而是启动Fetch task,直接从HDFS文件里filter过滤出须要的数据。须要设置例如以下參数:

set hive.fetch.task.conversion=more;

hive (hive)> select * fromuserbook where book_id = ‘15999998838’;

OK

userbook.book_id    userbook.book_name    userbook.author      userbook.public_date     userbook.address

15999998838     uviWfFJ KwCrDOA    2009-12-27  3b74416d-eb69-48e2-9d0d-09275064691b

Time taken: 0.093 seconds,Fetched: 1 row(s)

能够看到速度更快了。毕竟省略掉了开启MR任务,运行效率提高不少。

參考:https://cwiki.apache.org/confluence/display/Hive/LanguageManual+Indexing

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/115996.html原文链接:https://javaforall.cn

【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛

【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...

(0)


相关推荐

  • GPS模块开发详解(转)

    一、了解硬件我使用的GPS模块型号为UBX-M8030参看:UBX-M8030系列参看:UBX-M8030datasheet1、查看一下它的特性:多用途GNSS芯片,提供三种产品等级最多可并发接收3个GNSS(GPS、伽利略、GLONASS、北斗)行业领先的-167dBm导航灵敏度业界最低电流消耗在城市峡谷中具有绝佳的定位精度安全性和完整性保护支持所有…

  • 为什么要用redis好处_为什么用redis做缓存

    为什么要用redis好处_为什么用redis做缓存Redis真的那么好用吗?

  • 美化包软件_html简单进度条插件

    美化包软件_html简单进度条插件前言在我们进行自动化测试的时候,用例往往是成百上千,执行的时间是几十分钟或者是小时级别。有时,我们在调试那么多用例的时候,不知道执行到什么程度了,而pytest-sugar插件能很好解决我们的痛点。

  • linux下安装ffmpeg_linux 当前时间

    linux下安装ffmpeg_linux 当前时间linuxffmpeg安装ffmpeg安装不会吧这都22年了还有人问ffmpeg安装第一步我们先去下载资源包这里是4.4版本wgethttp://www.ffmpeg.org/releases/ffmpeg-4.4.tar.gz第二步解压资源包tar-zxvfffmpeg-4.4.tar.gz第3步创建安装目录我是安装在##我是安装在/www/server/ffmpeg下面mkdirffmpeg第4步返回解压目录cdffmpeg-4.

  • Oracle创建本地数据库实例及配置「建议收藏」

    Oracle创建本地数据库实例及配置「建议收藏」        因为以前一直都是用的mysql的数据库,所以当新工作中用到Oracle数据库的时候,一时还有点不习惯,特别是一直连接的远程数据库,更是麻烦,所以就想在本地创建一个Oracle的数据库,然后导入数据库的备份文件方便使用。然而看似简单的东西,真正动起手来,却也还是花了好一会儿工夫也才解决。所以希望能够把安装的过程记录下来,不仅方便自己以后查阅,也能督促自己开始写博客(3年前就有这样的想…

发表回复

您的电子邮箱地址不会被公开。

关注全栈程序员社区公众号