HDU-4407-Sum(容斥原理)「建议收藏」

HDU-4407-Sum(容斥原理)

大家好,又见面了,我是全栈君。

Problem Description
XXX is puzzled with the question below: 

1, 2, 3, …, n (1<=n<=400000) are placed in a line. There are m (1<=m<=1000) operations of two kinds.

Operation 1: among the x-th number to the y-th number (inclusive), get the sum of the numbers which are co-prime with p( 1 <=p <= 400000).

Operation 2: change the x-th number to c( 1 <=c <= 400000).

For each operation, XXX will spend a lot of time to treat it. So he wants to ask you to help him.

 


Input
There are several test cases.

The first line in the input is an integer indicating the number of test cases.

For each case, the first line begins with two integers — the above mentioned n and m.

Each the following m lines contains an operation.

Operation 1 is in this format: “1 x y p”. 

Operation 2 is in this format: “2 x c”.
 


Output
For each operation 1, output a single integer in one line representing the result.

 


Sample Input
   
   
1 3 3 2 2 3 1 1 3 4 1 2 3 6

 


Sample Output
   
   
7 0

 


Source

#include <stdio.h>

int num,idx[1005],val[1005],prime[10],p[40000];

inline bool check(int x)
{
    int i;

    for(i=0;i<num;i++) if(x%prime[i]==0) return 0;

    return 1;
}

int main()
{
    int T,n,m,i,j,k,type,cnt,a,b,c,last,lxdcnt,lxdnum,l,r;
    long long ans;

    //把40W以内的素数预处理出来-----------------
    cnt=0;

    for(i=2;i<400000;i++)
    {
        for(j=2;j*j<=i;j++) if(i%j==0) break;

        if(j*j>i) p[cnt++]=i;
    }
    //------------------------------------------

    scanf("%d",&T);

    while(T--)
    {
        scanf("%d%d",&n,&m);

        cnt=0;

        for(i=1;i<=m;i++)
        {
            scanf("%d",&type);

            if(type==1)
            {
                scanf("%d%d%d",&a,&b,&c);

                ans=(long long)(a+b)*(b-a+1)/2;

                num=0;//质因数的个数

                //获取c的质因数-----------------
                last=0;

                while(c>1)
                {
                    if(c%p[last]==0)
                    {
                        prime[num++]=p[last];
                        c/=p[last];
                        while(c%p[last]==0) c/=p[last];
                    }

                    last++;
                }
                //-------------------------------

                //容斥原理-------------------------
                for(j=1;j<(1<<num);j++)
                {
                    lxdcnt=0;
                    lxdnum=1;

                    for(k=0;k<num;k++) if(j&(1<<k))
                    {
                        lxdcnt++;
                        lxdnum*=prime[k];
                    }


                    l=a/lxdnum*lxdnum;
                    if(l<a) l+=lxdnum;
                    r=b/lxdnum*lxdnum;
                    if(r<l) continue;

                    if(lxdcnt&1) ans-=(long long)(l+r)*((r-l)/lxdnum+1)/2;
                    else ans+=(long long)(l+r)*((r-l)/lxdnum+1)/2;
                }
                //-----------------------------------

                //对改动过的数字特殊推断-----------------------------------
                for(j=0;j<cnt;j++)
                {
                    if(idx[j]>=a && idx[j]<=b)
                    {
                        if(!check(idx[j]))
                        {
                            if(check(val[j])) ans+=val[j];
                        }
                        else
                        {
                            if(check(val[j])) ans=ans+val[j]-idx[j];
                            else ans-=idx[j];
                        }
                    }
                }
                //--------------------------------------------------------

                printf("%I64d\n",ans);
            }
            else
            {
                scanf("%d%d",&a,&b);

                for(j=0;j<cnt;j++) if(idx[j]==a)//注意,改动的点可能之前已被改动过
                {
                    val[j]=b;
                    break;
                }

                if(j==cnt)
                {
                    idx[cnt]=a;
                    val[cnt++]=b;
                }
            }
        }
    }
}

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/115923.html原文链接:https://javaforall.cn

【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛

【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...

(0)


相关推荐

  • Hibernate框架–学习笔记(中):一对多配置、多对多配置

    Hibernate框架–学习笔记(中):一对多配置、多对多配置

  • 亿图图示2021用户名和密钥激活码 mac【2021.7最新】[通俗易懂]

    (亿图图示2021用户名和密钥激活码 mac)好多小伙伴总是说激活码老是失效,太麻烦,关注/收藏全栈君太难教程,2021永久激活的方法等着你。IntelliJ2021最新激活注册码,破解教程可免费永久激活,亲测有效,下面是详细链接哦~https://javaforall.cn/100143.htmlMLZPB5EL5Q-eyJsaWNlbnNlSW…

  • 精选30道Java笔试题解答

    精选30道Java笔试题解答都是一些非常非常基础的题,是我最近参加各大IT公司笔试后靠记忆记下来的,经过整理献给与我一样参加各大IT校园招聘的同学们,纯考Java基础功底,老手们就不用进来了,免得笑话我们这些未出校门的孩纸们,但

  • HBase常见面试题[通俗易懂]

    HBase常见面试题[通俗易懂]1.HBase简单读写流程?读:找到要读数据的region所在的RegionServer,然后按照以下顺序进行读取:先去BlockCache读取,若BlockCache没有,则到Memstore读取,若Memstore中没有,则到HFile中去读。写:找到要写数据的region所在的RegionServer,然后先将数据写到WAL(Write-AheadLogging,预写日志系统)中,然后再将数据写到Memstore等待刷新,回复客户端写入完成。2.简述HBase的瓶颈HBase的瓶

  • linux下的nginx重启命令

    linux下的nginx重启命令linux下的nginx重启命令常见以下3种:systemctlrestartnginxservicenginxrestart/usr/sbin/nginx-sreload

  • DNS 全局负载均衡(GSLB)基本原理[通俗易懂]

    DNS 全局负载均衡(GSLB)基本原理[通俗易懂]采用全局负载均衡(GSLB)的前提是在不同地区设立多个数据中心,业务已经做了分布式部署的规划,无论用户从哪个IDC访问都能得到相同的结果,或者用户基本不会出现跨区域流动访问的情况,只会访问就近IDC。解析步骤1.用户向本地DNS服务器发出查询请求,如果本地DNS服务器有该域名的缓存记录,如果本地DNS服务器有该域名的缓存记录,则返回给用户,否则进行第2步2.本地DNS服务器进行递归查询,最终会查询到域名注册商处的授权DNS服务器3.授权DNS服务器其返回一条NS记录给本地DNS服务器。.

发表回复

您的电子邮箱地址不会被公开。

关注全栈程序员社区公众号