Elasticlunr.js 简单介绍

Elasticlunr.js 简单介绍

大家好,又见面了,我是全栈君。

Elasticlunr.js

Build Status

项目地址:http://elasticlunr.com/
代码地址:https://github.com/weixsong/elasticlunr.js
文档地址:http://elasticlunr.com/docs/index.html

Elasticlurn.js is a lightweight full-text search engine in Javascript for browser search and offline search.
Elasticlunr.js is developed based on Lunr.js, but more flexible than lunr.js. Elasticlunr.js provides Query-Time boosting and field search.
Elasticlunr.js is a bit like Solr, but much smaller and not as bright, but also provide flexible configuration and query-time boosting.

Key Features Comparing with Lunr.js

  • Query-Time boosting, you don’t need to setup boosting weight in index building procedure, this make it more flexible that you could try different boosting scheme.
  • More rational scoring mechanism, Elasticlunr.js use quite the same scoring mechanism as Elasticsearch, and also this scoring mechanism is used by lucene.
  • Field-search, you could choose which field to index and which field to search.
  • Boolean Model, you could set which field to search and the boolean model for each query token, such as “OR”, “AND”.
  • Combined Boolean Model, TF/IDF Model and the Vector Space Model, make the results ranking more reliable.
  • Fast, Elasticlunr.js removed TokenCorpus and Vector from lunr.js, by using combined model there is no need to compute the vector of a document and query string to compute similarity of query and matched document, this improve the search speed significantly.
  • Small index file, Elasticlunr.js did not store TokenCorpus because there is no need to compute query vector and document vector, then the index file is very small, this is especially helpful when elasticlurn.js is used as offline search.

Example

A very simple search index can be created using the following scripts:

var index = elasticlunr(function () {
    this.addField('title');
    this.addField('body');
    this.setRef('id');
});

Adding documents to the index is as simple as:

var doc1 = {
    "id": 1,
    "title": "Oracle released its latest database Oracle 12g",
    "body": "Yestaday Oracle has released its new database Oracle 12g, this would make more money for this company and lead to a nice profit report of annual year."
}

var doc2 = {
    "id": 2,
    "title": "Oracle released its profit report of 2015",
    "body": "As expected, Oracle released its profit report of 2015, during the good sales of database and hardware, Oracle's profit of 2015 reached 12.5 Billion."
}

index.addDoc(doc1);
index.addDoc(doc2);

Then searching is as simple:

index.search("Oracle database profit");

Also, you could do query-time boosting by passing in a configuration.

index.search("Oracle database profit", {
    fields: {
        title: {boost: 2},
        body: {boost: 1}
    }
});

This returns a list of matching documents with a score of how closely they match the search query:

[{
    "ref": 1,
    "score": 0.5376053707962494
},
{
    "ref": 2,
    "score": 0.5237481076838757
}]

API documentation is available, as well as a full working example.

Description

Elasticlunr.js is developed based on Lunr.js, but more flexible than lunr.js. Elasticlunr.js provides Query-Time boosting and field search.
A bit like Solr, but much smaller and not as bright, but also provide flexible configuration and query-time boosting.

Why

  1. In some system, you don’t want to deploy any Web Server(such as Apache, Nginx, etc.), you only provide some static web pages and provide search function in client side. Then you could build index in previous and load index in client side.
  2. Provide offline search functionality. For some documents, user usually download these documents, you could build index and put index in the documents package, then provide offline search functionality.
  3. For some limited or restricted network, such WAN or LAN, offline search is a better choice.
  4. For mobile device, Iphone or Android phone, network traffic maybe very expensive, then provide offline search is a good choice.

Installation

Simply include the elasticlunr.js source file in the page that you want to use it. Elasticlunr.js is supported in all modern browsers.

Browsers that do not support ES5 will require a JavaScript shim for Elasticlunr.js to work. You can either use Augment.js, ES5-Shim or any library that patches old browsers to provide an ES5 compatible JavaScript environment.

Documentation

This part only contain important apects of elasticlunr.js, for the whole documentation, please go to API documentation.

1. Build Index

When you first create a index instance, you need to specify which field you want to index. If you did not specify which field to index, then no field will be searchable for your documents.
You could specify fields by:

var index = elasticlunr(function () {
    this.addField('title');
    this.addField('body');
    this.setRef('id');
});

You could also set the document reference by this.setRef('id'), if you did not set document ref, elasticlunr.js will use ‘id’ as default.

You could do the above index setup as followings:

var index = elasticlunr();
index.addField('title');
index.addField('body');
index.setRef('id');

Default supported language of elasticlunr.js is English, if you want to use elasticlunr.js to index other language documents, then you need to use elasticlunr.js combined with lunr-languages.
Assume you’re using lunr-language in Node.js envrionment, you could import lunr-language as followings:

var lunr = require('./lib/lunr.js');
require('./lunr.stemmer.support.js')(lunr);
require('./lunr.de.js')(lunr);

var idx = lunr(function () {
    // use the language (de)
    this.use(lunr.de);
    // then, the normal lunr index initialization
    this.field('title')
    this.field('body')
});

For more details, please go to lunr-languages.

2. Add document to index

Add document to index is very simple, just prepare you document in JSON format, then add it to index.

var doc1 = {
    "id": 1,
    "title": "Oracle released its latest database Oracle 12g",
    "body": "Yestaday Oracle has released its new database Oracle 12g, this would make more money for this company and lead to a nice profit report of annual year."
}

var doc2 = {
    "id": 2,
    "title": "Oracle released its profit report of 2015",
    "body": "As expected, Oracle released its profit report of 2015, during the good sales of database and hardware, Oracle's profit of 2015 reached 12.5 Billion."
}

index.addDoc(doc1);
index.addDoc(doc2);

If your JSON document contains field that not configured in index, then that field will not be indexed, which means that field is not searchable.

3. Remove document from index

Elasticlunr.js support remove a document from index, just provide JSON document to elasticlunr.Index.prototype.removeDoc() function.

For example:

var doc = {
    "id": 1,
    "title": "Oracle released its latest database Oracle 12g",
    "body": "Yestaday Oracle has released its new database Oracle 12g, this would make more money for this company and lead to a nice profit report of annual year."
}

index.removeDoc(doc);

Remove a document will remove each token of that document’s each field from field-specified inverted index.

4. Update a document in index

Elasticlunr.js support update a document in index, just provide JSON document to elasticlunr.Index.prototype.update() function.

For example:

var doc = {
    "id": 1,
    "title": "Oracle released its latest database Oracle 12g",
    "body": "Yestaday Oracle has released its new database Oracle 12g, this would make more money for this company and lead to a nice profit report of annual year."
}

index.update(doc);

5. Query from Index

Elasticlunr.js provides flexible query configuration, supports query-time boosting and Boolean logic setting.
You could setup a configuration tell elasticlunr.js how to do query-time boosting, which field to search in, how to do the boolean logic.
Or you could just use it by simply provide a query string, this will aslo works perfectly because the scoring mechanism is very efficient.

5.1 Simple Query

Because elasticlunr.js has a very perfect scoring mechanism, so for most of your requirement, simple search would be easy to meet your requirement.

index.search("Oracle database profit");

Output is a results array, each element of results array is an Object contain a ref field and a score field.
ref is the document reference.
score is the similarity measurement.

Results array is sorted descent by score.

5.2 Configuration Query

5.2.1 Query-Time Boosting

Setup which fields to search in by passing in a JSON configuration, and setup boosting for each search field.
If you setup this configuration, then elasticlunr.js will only search the query string in the specified fields with boosting weight.

The scoring mechanism used in elasticlunr.js is very complex, please goto details for more information.

index.search("Oracle database profit", {
    fields: {
        title: {boost: 2},
        body: {boost: 1}
    }
});

5.2.2 Boolean Model

Elasticlunr.js also support boolean logic setting, if no boolean logic is setted, elasticlunr.js use “OR” logic defaulty. By “OR” default logic, elasticlunr.js could reach a high Recall.

index.search("Oracle database profit", {
    fields: {
        title: {boost: 2},
        body: {boost: 1}
    },
    boolean: "OR"
});

Boolean operation is performed based on field. This means that if you choose “AND” logic, documents with all the query tokens in the query field will be returned as a field results. If you query in multiple fields, different field results will be merged together to give a final query results.

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/115845.html原文链接:https://javaforall.cn

【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛

【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...

(0)
blank

相关推荐

  • MySQL常用SQL语句大全

    MySQL常用SQL语句大全MySQL数据库是一个十分轻便的数据库管理系统,相比大型的数据库管理系统如Oracle、MS-SQL,MySQL更拥有轻便、灵活、开发速度快的特色,更适用于中小型数据的存储与架构。MySQL之所以能够被数以万计的网站采用,也是由此而来。

  • alt复制选区就会卡 ps_ps复制选区快捷键是什么

    alt复制选区就会卡 ps_ps复制选区快捷键是什么大家好,我是时间财富网智能客服时间君,上述问题将由我为大家进行解答。ps复制选区快捷键:1、新选区:Ctrl+点击。2、添加到选区:Ctrl+Shift+点击。3、从选区中减去:Ctrl+Alt+点击。4、与选区交叉:Ctrl+Shift+Alt+点击。5、使用ps创建一个选区后按Ctrl+J就会复制ps选区。AdobePhotoshop是AdobeSystems开发和发行的图像处理软件,主…

  • zabbix5.0安装及配置

    zabbix5.0安装及配置

  • android自定义toast样式_android设置对话框宽度

    android自定义toast样式_android设置对话框宽度在一般的android开发中我们一般弹出一些提示信息,例如已打开蓝牙,wifi之类的提示,我们都是会选择Toast进行弹出。今天我们的客户提出们应用弹出提示太小,用户不注意的情况下,容易被忽略掉,要弹出的宽度填充整个屏幕,首先想到是不是需要自定义Toast,经过自己的一番研究后,发现不需要自定Toast,用现有的Toast就可以轻松实现了。publicvoidshowToast(Cont

  • CreatePipe 函数[通俗易懂]

    CreatePipe 函数[通俗易懂]创建管道共享数据[code="C++"]//创建匿名管道SECURITY_ATTRIBUTESsa;HANDLEhRead,hWrite;sa.nLength=sizeof(SECURITY_ATTRIBUTES);sa.lpSecurityDescriptor=NULL;sa.bInheritHandle=TRUE;CreatePipe(…

  • Eurake分区理解

    Eurake分区理解Eurake分区理解大型项目如果存在多个机房,例如北京机房,上海机房,杭州机房等,上千个服务注册在Eurake上面,我们的事例也分别部署在各个区域。这时候,由于机房存在不同的区域,北京的一个服务如果调用上海的一个服务,就可能发生延迟,服务的响应速度也会慢很多,这时候,我们可能期望,北京的服务生产者调用北京的服务消费着,这该怎么去操作?Eurake其实有个分区功能,什么是分区,就是北京有一个注册…

发表回复

您的电子邮箱地址不会被公开。

关注全栈程序员社区公众号