Java集合篇:Vector

Java集合篇:Vector

一、Vector简介:

(1)Vector可以实现可增长的对象数组。与数组一样,可以使用整数索引进行访问的组件。不过,Vector的大小是可以增加或者减小的,以便适应创建Vector后进行添加或者删除操作。

(2)同时Vector是线程安全的!底层使用的是synchronized进行加锁。

public class Vector<E>
    extends AbstractList<E>
    implements List<E>, RandomAccess, Cloneable, java.io.Serializable

1、Vector实现List接口,继承AbstractList类,所以我们可以将其看做队列,支持相关的添加、删除、修改、遍历等功能。

Vector实现RandmoAccess接口,即提供了随机访问功能,提供提供快速访问功能。在Vector我们可以直接访问元素。

Vector 实现了Cloneable接口,支持clone()方法,可以被克隆。

Vector实现了Serializable接口,因此可以进行序列化。

2、成员变量方面,Vector提供了elementData , elementCount, capacityIncrement三个成员变量。其中

(1)elementData :”Object[]类型的数组”,它保存了Vector中的元素,是一个动态数组,可以随着元素的增加而动态的增长,(具体增长方式在ensureCapacity方法中)。如果在初始化Vector时没有指定容器大小,则使用默认大小为10。

(2)elementCount:Vector 对象中的元素个数。

(3)capacityIncrement:向量的大小大于其容量时,容量自动增加的量。如果在创建Vector时,指定了capacityIncrement的大小,则每次当Vector中动态数组容量增加时,增加的大小都是capacityIncrement。如果容量的增量小于等于零,则每次需要增大容量时,向量的容量将增大一倍。

 

二、Vector遍历:

//第一种:通过下标进行随机访问
for(int i = 0 ; i < vec.size() ; i++){
        value = vec.get(i);
    }

//第二种:迭代器:
Iterator it = vec.iterator();
    while(it.hasNext()){
        value = it.next();
        //do something
    }

//第三种:for循环
for(Integer value:vec){
        //do something
    }

//第四种:Enumeration循环:
Vector vec = new Vector<>();
    Enumeration enu = vec.elements();
    while (enu.hasMoreElements()) {
        value = (Integer)enu.nextElement();
    }

Vector示例代码:

public class Hello {
	public static void main(String[] args) {
		Vector vec = new Vector();
		// 添加
		vec.add("1");
		vec.add("2");
		vec.add("3");
		vec.add("4");
		vec.add("5");
		// 替换
		vec.set(0, "100");
		vec.add(2, "300");

		System.out.println("vec:" + vec);
		System.out.println("vec.indexOf(100):" + vec.indexOf("100"));
		System.out.println("vec.lastIndexOf(100):" + vec.lastIndexOf("100"));
		System.out.println("vec.firstElement():" + vec.firstElement());
		System.out.println("vec.elementAt(2):" + vec.elementAt(2));
		System.out.println("vec.lastElement():" + vec.lastElement());
		System.out.println("size:" + vec.size());
		System.out.println("capacity:" + vec.capacity());
		System.out.println("vec 2 to 4:" + vec.subList(1, 4));
		Enumeration enu = vec.elements();
		while (enu.hasMoreElements()) {
			System.out.println("nextElement():" + enu.nextElement());
			Vector retainVec = new Vector();
			retainVec.add("100");
			retainVec.add("300");
			System.out.println("vec.retain():" + vec.retainAll(retainVec));
			System.out.println("vec:" + vec);
			String[] arr = (String[]) vec.toArray(new String[0]);
			for (String str : arr)
				System.out.println("str:" + str);
			vec.clear();
			vec.removeAllElements();
			System.out.println("vec.isEmpty():" + vec.isEmpty());
		}
	}
}

输出结果:

vec:[100, 2, 300, 3, 4, 5]
vec.indexOf(100):0
vec.lastIndexOf(100):0
vec.firstElement():100
vec.elementAt(2):300
vec.lastElement():5
size:6
capacity:10
vec 2 to 4:[2, 300, 3]
nextElement():100
vec.retain():true
vec:[100, 300]
str:100
str:300
vec.isEmpty():true

 

三、源码解析:

1、add(E e):添加元素

add(E e):将指定元素添加到此向量的末尾。

public synchronized boolean add(E e) {
        modCount++;     
        ensureCapacityHelper(elementCount + 1);    //确认容器大小,如果超过容量则扩容操作
        elementData[elementCount++] = e;   //将e元素添加至末尾
        return true;
    }

 这个方法相对而言比较简单,具体过程就是先确认容器的大小,看是否需要进行扩容操作,然后将E元素添加到此向量的末尾。

private void ensureCapacityHelper(int minCapacity) {
        if (minCapacity - elementData.length > 0)
            grow(minCapacity);
    }
    
    /**
     * 进行扩容操作
     * 如果此向量的当前容量小于minCapacity,则通过将其内部数组替换为一个较大的数组俩增加其容量。
     * 新数据数组的大小姜维原来的大小 + capacityIncrement,
     * 除非 capacityIncrement 的值小于等于零,在后一种情况下,新的容量将为原来容量的两倍,不过,如果此大小仍然小于 minCapacity,则新容量将为 minCapacity。
     */
    private void grow(int minCapacity) {
        int oldCapacity = elementData.length;     //当前容器大小
        /*
         * 新容器大小
         * 若容量增量系数(capacityIncrement) > 0,则将容器大小增加到capacityIncrement
         * 否则将容量增加一倍
         */
        int newCapacity = oldCapacity + ((capacityIncrement > 0) ?
                                         capacityIncrement : oldCapacity);
        
        if (newCapacity - minCapacity < 0)
            newCapacity = minCapacity;
        
        if (newCapacity - MAX_ARRAY_SIZE > 0)
            newCapacity = hugeCapacity(minCapacity);
        
        elementData = Arrays.copyOf(elementData, newCapacity);
    }
    
    /**
     * 判断是否超出最大范围
     * MAX_ARRAY_SIZE:private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
     */
    private static int hugeCapacity(int minCapacity) {
        if (minCapacity < 0)
            throw new OutOfMemoryError();
        return (minCapacity > MAX_ARRAY_SIZE) ? Integer.MAX_VALUE : MAX_ARRAY_SIZE;
    }

对于Vector整个的扩容过程,就是根据capacityIncrement确认扩容大小的,若capacityIncrement <= 0 则扩大一倍,否则扩大至capacityIncrement 。当然这个容量的最大范围为Integer.MAX_VALUE即,2^32 – 1,所以Vector并不是可以无限扩充的。


2、remove(Object o):

/**
     * 从Vector容器中移除指定元素E
     */
    public boolean remove(Object o) {
        return removeElement(o);
    }
 
    public synchronized boolean removeElement(Object obj) {
        modCount++;
        int i = indexOf(obj);   //计算obj在Vector容器中位置
        if (i >= 0) {
            removeElementAt(i);   //移除
            return true;
        }
        return false;
    }
    
    public synchronized void removeElementAt(int index) {
        modCount++;     //修改次数+1
        if (index >= elementCount) {   //删除位置大于容器有效大小
            throw new ArrayIndexOutOfBoundsException(index + " >= " + elementCount);
        }
        else if (index < 0) {    //位置小于 < 0
            throw new ArrayIndexOutOfBoundsException(index);
        }
        int j = elementCount - index - 1;
        if (j > 0) {   
            //从指定源数组中复制一个数组,复制从指定的位置开始,到目标数组的指定位置结束。
            //也就是数组元素从j位置往前移
            System.arraycopy(elementData, index + 1, elementData, index, j);
        }
        elementCount--;   //容器中有效组件个数 - 1
        elementData[elementCount] = null;    //将向量的末尾位置设置为null
    }

 因为Vector底层是使用数组实现的,所以它的操作都是对数组进行操作,只不过其是可以随着元素的增加而动态的改变容量大小,其实现方法是是使用Arrays.copyOf方法将旧数据拷贝到一个新的大容量数组中。Vector的整个内部实现都比较简单,这里就不在重述了。


3、Vector 其他方法源代码:

public class Vector<E> extends AbstractList<E>
implements List<E>, RandomAccess, Cloneable, java.io.Serializable
{
protected Object[] elementData;//对象数组,来存放数据
protected int elementCount; //当前的数据数目
protected int capacityIncrement; //容量增长
private static final long serialVersionUID = -2767605614048989439L; //序列号
//构造函数矢量队列初始化大小和增长大小
public Vector(int initialCapacity, int capacityIncrement) {
super();
if (initialCapacity < 0)
throw new IllegalArgumentException("Illegal Capacity: "+
initialCapacity);
this.elementData = new Object[initialCapacity];
this.capacityIncrement = capacityIncrement;
}
//构造函数初始化大小
public Vector(int initialCapacity) {
this(initialCapacity, 0);
}
//构造函数默认初始化大小10
public Vector() {
this(10);
}
//带有集合参数的构造函数
public Vector(Collection<? extends E> c) {
elementData = c.toArray();
elementCount = elementData.length;
// c.toArray might (incorrectly) not return Object[] (see 6260652)
if (elementData.getClass() != Object[].class)
elementData = Arrays.copyOf(elementData, elementCount, Object[].class);
}
//线程安全的对象数组拷贝
public synchronized void copyInto(Object[] anArray) {
System.arraycopy(elementData, 0, anArray, 0, elementCount);
}
//调整容量大小适合当前矢量队列的大小
public synchronized void trimToSize() {
modCount++;
int oldCapacity = elementData.length;
if (elementCount < oldCapacity) {
elementData = Arrays.copyOf(elementData, elementCount);
}
}
//增加矢量队列的容量大小
public synchronized void ensureCapacity(int minCapacity) {
if (minCapacity > 0) {
modCount++;
ensureCapacityHelper(minCapacity);
}
}
private void ensureCapacityHelper(int minCapacity) {
// overflow-conscious code
if (minCapacity - elementData.length > 0)
grow(minCapacity);
}
private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
private void grow(int minCapacity) {
// overflow-conscious code
int oldCapacity = elementData.length;
int newCapacity = oldCapacity + ((capacityIncrement > 0) ?
capacityIncrement : oldCapacity);
if (newCapacity - minCapacity < 0)
newCapacity = minCapacity;
if (newCapacity - MAX_ARRAY_SIZE > 0)
newCapacity = hugeCapacity(minCapacity);
elementData = Arrays.copyOf(elementData, newCapacity);
}
private static int hugeCapacity(int minCapacity) {
if (minCapacity < 0) // overflow
throw new OutOfMemoryError();
return (minCapacity > MAX_ARRAY_SIZE) ?
Integer.MAX_VALUE :
MAX_ARRAY_SIZE;
}
//调整大小,如果超出了就删掉多余的对象
public synchronized void setSize(int newSize) {
modCount++;
if (newSize > elementCount) {
ensureCapacityHelper(newSize);
} else {
for (int i = newSize ; i < elementCount ; i++) {
elementData[i] = null;
}
}
elementCount = newSize;
}
//矢量对象的容量
public synchronized int capacity() {
return elementData.length;
}
//矢量队列的大小
public synchronized int size() {
return elementCount;
}
//是否为空
public synchronized boolean isEmpty() {
return elementCount == 0;
}
//生成Enumeration对象,进行遍历
public Enumeration<E> elements() {
return new Enumeration<E>() {
int count = 0;
public boolean hasMoreElements() {
return count < elementCount;
}
public E nextElement() {
synchronized (Vector.this) {
if (count < elementCount) {
return elementData(count++);
}
}
throw new NoSuchElementException("Vector Enumeration");
}
};
}
//判断是否包含某个对象
public boolean contains(Object o) {
return indexOf(o, 0) >= 0;
}
//返回某个对象的下标
public int indexOf(Object o) {
return indexOf(o, 0);
}
public synchronized int indexOf(Object o, int index) {
if (o == null) {
for (int i = index ; i < elementCount ; i++)
if (elementData[i]==null)
return i;
} else {
for (int i = index ; i < elementCount ; i++)
if (o.equals(elementData[i]))
return i;
}
return -1;
}
//最后出现的对象的坐标
public synchronized int lastIndexOf(Object o) {
return lastIndexOf(o, elementCount-1);
}
public synchronized int lastIndexOf(Object o, int index) {
if (index >= elementCount)
throw new IndexOutOfBoundsException(index + " >= "+ elementCount);
if (o == null) {
for (int i = index; i >= 0; i--)
if (elementData[i]==null)
return i;
} else {
for (int i = index; i >= 0; i--)
if (o.equals(elementData[i]))
return i;
}
return -1;
}
//返回某个坐标的节点
public synchronized E elementAt(int index) {
if (index >= elementCount) {
throw new ArrayIndexOutOfBoundsException(index + " >= " + elementCount);
}
return elementData(index);
}
//第一个元素
public synchronized E firstElement() {
if (elementCount == 0) {
throw new NoSuchElementException();
}
return elementData(0);
}
//最后一个元素
public synchronized E lastElement() {
if (elementCount == 0) {
throw new NoSuchElementException();
}
return elementData(elementCount - 1);
}
//对下标为index的元素替换为obj
public synchronized void setElementAt(E obj, int index) {
if (index >= elementCount) {
throw new ArrayIndexOutOfBoundsException(index + " >= " +
elementCount);
}
elementData[index] = obj;
}
//删除某个下标的元素
public synchronized void removeElementAt(int index) {
modCount++;
if (index >= elementCount) {
throw new ArrayIndexOutOfBoundsException(index + " >= " +
elementCount);
}
else if (index < 0) {
throw new ArrayIndexOutOfBoundsException(index);
}
int j = elementCount - index - 1;
if (j > 0) {
System.arraycopy(elementData, index + 1, elementData, index, j);
}
elementCount--;
elementData[elementCount] = null; /* to let gc do its work */
}
//在index坐标后添加obj
public synchronized void insertElementAt(E obj, int index) {
modCount++;
if (index > elementCount) {
throw new ArrayIndexOutOfBoundsException(index
+ " > " + elementCount);
}
ensureCapacityHelper(elementCount + 1);
System.arraycopy(elementData, index, elementData, index + 1, elementCount - index);
elementData[index] = obj;
elementCount++;
}
//矢量队列末尾添加元素
public synchronized void addElement(E obj) {
modCount++;
ensureCapacityHelper(elementCount + 1);
elementData[elementCount++] = obj;
}
//删除obj元素
public synchronized boolean removeElement(Object obj) {
modCount++;
int i = indexOf(obj);
if (i >= 0) {
removeElementAt(i);
return true;
}
return false;
}
//清空所有元素
public synchronized void removeAllElements() {
modCount++;
// Let gc do its work
for (int i = 0; i < elementCount; i++)
elementData[i] = null;
elementCount = 0;
}
//克隆
public synchronized Object clone() {
try {
@SuppressWarnings("unchecked")
Vector<E> v = (Vector<E>) super.clone();
v.elementData = Arrays.copyOf(elementData, elementCount);
v.modCount = 0;
return v;
} catch (CloneNotSupportedException e) {
// this shouldn't happen, since we are Cloneable
throw new InternalError(e);
}
}
//生成数组
public synchronized Object[] toArray() {
return Arrays.copyOf(elementData, elementCount);
}
@SuppressWarnings("unchecked")
public synchronized <T> T[] toArray(T[] a) {
if (a.length < elementCount)
return (T[]) Arrays.copyOf(elementData, elementCount, a.getClass());
System.arraycopy(elementData, 0, a, 0, elementCount);
if (a.length > elementCount)
a[elementCount] = null;
return a;
}
@SuppressWarnings("unchecked")
E elementData(int index) {
return (E) elementData[index];
}
//得到index的元素
public synchronized E get(int index) {
if (index >= elementCount)
throw new ArrayIndexOutOfBoundsException(index);
return elementData(index);
}
//将index元素替换成element
public synchronized E set(int index, E element) {
if (index >= elementCount)
throw new ArrayIndexOutOfBoundsException(index);
E oldValue = elementData(index);
elementData[index] = element;
return oldValue;
}
//矢量队列队尾添加元素
public synchronized boolean add(E e) {
modCount++;
ensureCapacityHelper(elementCount + 1);
elementData[elementCount++] = e;
return true;
}
//删除对象
public boolean remove(Object o) {
return removeElement(o);
}
//在index处添加元素
public void add(int index, E element) {
insertElementAt(element, index);
}
//删除index处元素
public synchronized E remove(int index) {
modCount++;
if (index >= elementCount)
throw new ArrayIndexOutOfBoundsException(index);
E oldValue = elementData(index);
int numMoved = elementCount - index - 1;
if (numMoved > 0)
System.arraycopy(elementData, index+1, elementData, index,
numMoved);
elementData[--elementCount] = null; // Let gc do its work
return oldValue;
}
//清空元素
public void clear() {
removeAllElements();
}
//判断Vector中是否含有所有的Collection
public synchronized boolean containsAll(Collection<?> c) {
return super.containsAll(c);
}
//将Collection添加到矢量队列的队尾
public synchronized boolean addAll(Collection<? extends E> c) {
modCount++;
Object[] a = c.toArray();
int numNew = a.length;
ensureCapacityHelper(elementCount + numNew);
System.arraycopy(a, 0, elementData, elementCount, numNew);
elementCount += numNew;
return numNew != 0;
}
//删除包含Collection的元素
public synchronized boolean removeAll(Collection<?> c) {
return super.removeAll(c);
}
//删除不存在Collection的元素
public synchronized boolean retainAll(Collection<?> c) {
return super.retainAll(c);
}
//在某个index之后追加集合
public synchronized boolean addAll(int index, Collection<? extends E> c) {
modCount++;
if (index < 0 || index > elementCount)
throw new ArrayIndexOutOfBoundsException(index);
Object[] a = c.toArray();
int numNew = a.length;
ensureCapacityHelper(elementCount + numNew);
int numMoved = elementCount - index;
if (numMoved > 0)
System.arraycopy(elementData, index, elementData, index + numNew,
numMoved);
System.arraycopy(a, 0, elementData, index, numNew);
elementCount += numNew;
return numNew != 0;
}
//判断矢量队列是否相同
public synchronized boolean equals(Object o) {
return super.equals(o);
}
//返回hashCode
public synchronized int hashCode() {
return super.hashCode();
}
//
public synchronized String toString() {
return super.toString();
}
//切断
public synchronized List<E> subList(int fromIndex, int toIndex) {
return Collections.synchronizedList(super.subList(fromIndex, toIndex),
this);
}
//删除范围
protected synchronized void removeRange(int fromIndex, int toIndex) {
modCount++;
int numMoved = elementCount - toIndex;
System.arraycopy(elementData, toIndex, elementData, fromIndex,
numMoved);
// Let gc do its work
int newElementCount = elementCount - (toIndex-fromIndex);
while (elementCount != newElementCount)
elementData[--elementCount] = null;
}
//序列化
private void writeObject(java.io.ObjectOutputStream s)
throws java.io.IOException {
final java.io.ObjectOutputStream.PutField fields = s.putFields();
final Object[] data;
synchronized (this) {
fields.put("capacityIncrement", capacityIncrement);
fields.put("elementCount", elementCount);
data = elementData.clone();
}
fields.put("elementData", data);
s.writeFields();
}
//迭代
public synchronized ListIterator<E> listIterator(int index) {
if (index < 0 || index > elementCount)
throw new IndexOutOfBoundsException("Index: "+index);
return new ListItr(index);
}
public synchronized ListIterator<E> listIterator() {
return new ListItr(0);
}
public synchronized Iterator<E> iterator() {
return new Itr();
}
private class Itr implements Iterator<E> {
int cursor;       // index of next element to return
int lastRet = -1; // index of last element returned; -1 if no such
int expectedModCount = modCount;
public boolean hasNext() {
// Racy but within spec, since modifications are checked
// within or after synchronization in next/previous
return cursor != elementCount;
}
public E next() {
synchronized (Vector.this) {
checkForComodification();
int i = cursor;
if (i >= elementCount)
throw new NoSuchElementException();
cursor = i + 1;
return elementData(lastRet = i);
}
}
public void remove() {
if (lastRet == -1)
throw new IllegalStateException();
synchronized (Vector.this) {
checkForComodification();
Vector.this.remove(lastRet);
expectedModCount = modCount;
}
cursor = lastRet;
lastRet = -1;
}
@Override
public void forEachRemaining(Consumer<? super E> action) {
Objects.requireNonNull(action);
synchronized (Vector.this) {
final int size = elementCount;
int i = cursor;
if (i >= size) {
return;
}
@SuppressWarnings("unchecked")
final E[] elementData = (E[]) Vector.this.elementData;
if (i >= elementData.length) {
throw new ConcurrentModificationException();
}
while (i != size && modCount == expectedModCount) {
action.accept(elementData[i++]);
}
// update once at end of iteration to reduce heap write traffic
cursor = i;
lastRet = i - 1;
checkForComodification();
}
}
final void checkForComodification() {
if (modCount != expectedModCount)
throw new ConcurrentModificationException();
}
}
final class ListItr extends Itr implements ListIterator<E> {
ListItr(int index) {
super();
cursor = index;
}
public boolean hasPrevious() {
return cursor != 0;
}
public int nextIndex() {
return cursor;
}
public int previousIndex() {
return cursor - 1;
}
public E previous() {
synchronized (Vector.this) {
checkForComodification();
int i = cursor - 1;
if (i < 0)
throw new NoSuchElementException();
cursor = i;
return elementData(lastRet = i);
}
}
public void set(E e) {
if (lastRet == -1)
throw new IllegalStateException();
synchronized (Vector.this) {
checkForComodification();
Vector.this.set(lastRet, e);
}
}
public void add(E e) {
int i = cursor;
synchronized (Vector.this) {
checkForComodification();
Vector.this.add(i, e);
expectedModCount = modCount;
}
cursor = i + 1;
lastRet = -1;
}
}
@Override
public synchronized void forEach(Consumer<? super E> action) {
Objects.requireNonNull(action);
final int expectedModCount = modCount;
@SuppressWarnings("unchecked")
final E[] elementData = (E[]) this.elementData;
final int elementCount = this.elementCount;
for (int i=0; modCount == expectedModCount && i < elementCount; i++) {
action.accept(elementData[i]);
}
if (modCount != expectedModCount) {
throw new ConcurrentModificationException();
}
}
@Override
@SuppressWarnings("unchecked")
public synchronized boolean removeIf(Predicate<? super E> filter) {
Objects.requireNonNull(filter);
// figure out which elements are to be removed
// any exception thrown from the filter predicate at this stage
// will leave the collection unmodified
int removeCount = 0;
final int size = elementCount;
final BitSet removeSet = new BitSet(size);
final int expectedModCount = modCount;
for (int i=0; modCount == expectedModCount && i < size; i++) {
@SuppressWarnings("unchecked")
final E element = (E) elementData[i];
if (filter.test(element)) {
removeSet.set(i);
removeCount++;
}
}
if (modCount != expectedModCount) {
throw new ConcurrentModificationException();
}
// shift surviving elements left over the spaces left by removed elements
final boolean anyToRemove = removeCount > 0;
if (anyToRemove) {
final int newSize = size - removeCount;
for (int i=0, j=0; (i < size) && (j < newSize); i++, j++) {
i = removeSet.nextClearBit(i);
elementData[j] = elementData[i];
}
for (int k=newSize; k < size; k++) {
elementData[k] = null;  // Let gc do its work
}
elementCount = newSize;
if (modCount != expectedModCount) {
throw new ConcurrentModificationException();
}
modCount++;
}
return anyToRemove;
}
@Override
@SuppressWarnings("unchecked")
public synchronized void replaceAll(UnaryOperator<E> operator) {
Objects.requireNonNull(operator);
final int expectedModCount = modCount;
final int size = elementCount;
for (int i=0; modCount == expectedModCount && i < size; i++) {
elementData[i] = operator.apply((E) elementData[i]);
}
if (modCount != expectedModCount) {
throw new ConcurrentModificationException();
}
modCount++;
}
@SuppressWarnings("unchecked")
@Override
public synchronized void sort(Comparator<? super E> c) {
final int expectedModCount = modCount;
Arrays.sort((E[]) elementData, 0, elementCount, c);
if (modCount != expectedModCount) {
throw new ConcurrentModificationException();
}
modCount++;
}
@Override
public Spliterator<E> spliterator() {
return new VectorSpliterator<>(this, null, 0, -1, 0);
}
/** Similar to ArrayList Spliterator */
static final class VectorSpliterator<E> implements Spliterator<E> {
private final Vector<E> list;
private Object[] array;
private int index; // current index, modified on advance/split
private int fence; // -1 until used; then one past last index
private int expectedModCount; // initialized when fence set
/** Create new spliterator covering the given  range */
VectorSpliterator(Vector<E> list, Object[] array, int origin, int fence,
int expectedModCount) {
this.list = list;
this.array = array;
this.index = origin;
this.fence = fence;
this.expectedModCount = expectedModCount;
}
private int getFence() { // initialize on first use
int hi;
if ((hi = fence) < 0) {
synchronized(list) {
array = list.elementData;
expectedModCount = list.modCount;
hi = fence = list.elementCount;
}
}
return hi;
}
public Spliterator<E> trySplit() {
int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
return (lo >= mid) ? null :
new VectorSpliterator<E>(list, array, lo, index = mid,
expectedModCount);
}
@SuppressWarnings("unchecked")
public boolean tryAdvance(Consumer<? super E> action) {
int i;
if (action == null)
throw new NullPointerException();
if (getFence() > (i = index)) {
index = i + 1;
action.accept((E)array[i]);
if (list.modCount != expectedModCount)
throw new ConcurrentModificationException();
return true;
}
return false;
}
@SuppressWarnings("unchecked")
public void forEachRemaining(Consumer<? super E> action) {
int i, hi; // hoist accesses and checks from loop
Vector<E> lst; Object[] a;
if (action == null)
throw new NullPointerException();
if ((lst = list) != null) {
if ((hi = fence) < 0) {
synchronized(lst) {
expectedModCount = lst.modCount;
a = array = lst.elementData;
hi = fence = lst.elementCount;
}
}
else
a = array;
if (a != null && (i = index) >= 0 && (index = hi) <= a.length) {
while (i < hi)
action.accept((E) a[i++]);
if (lst.modCount == expectedModCount)
return;
}
}
throw new ConcurrentModificationException();
}
public long estimateSize() {
return (long) (getFence() - index);
}
public int characteristics() {
return Spliterator.ORDERED | Spliterator.SIZED | Spliterator.SUBSIZED;
}
}
}

 

原文转自:

https://blog.csdn.net/chenssy/article/details/37520981

https://blog.csdn.net/qq924862077/article/details/48039567?utm_source=blogxgwz3

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/114662.html原文链接:https://javaforall.cn

【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛

【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...

(0)


相关推荐

  • BIRCH详解_Bilabial

    BIRCH详解_BilabialBIRCH(BalancedIterativeReducingandClusteringusingHierarchies)详解第三十次写博客,本人数学基础不是太好,如果有幸能得到读者指正,感激不尽,希望能借此机会向大家学习。这一篇作为可伸缩聚类(ScalableClustering)算法的第三篇,主要是对BIRCH(BalancedIterativeReducingand…

    2022年10月31日
  • BigDecimal加减乘除运算

    BigDecimal加减乘除运算java.math.BigDecimal。BigDecimal一共有4个够造方法,让我先来看看其中的两种用法:第一种:BigDecimal(doubleval)TranslatesadoubleintoaBigDecimal.第二种:BigDecimal(Stringval)TranslatestheStringrepresentationofaBig

  • Autoconf编译配置

    Autoconf编译配置1、大型项目编译过程./configuremakemakeinstallLinux中的configure/make/makeinstall到底在做些什么1)./configure:configure是一个脚本,一般由Autoconf工具生成,它会检验当前的系统环境,看是否满足安装软件所必需的条件:比如当前系统是否支持待安装软件,是否已经安装软件依赖等。configure脚本最后会生成一个Makefile文件。2)makemake是一个命令,它使用第1步得到的Makefile文件,如果

  • php中trait的使用

    php中trait的使用

  • 推荐下载使用:金山词霸2009官方牛津版 + 激活成功教程补丁

    推荐下载使用:金山词霸2009官方牛津版 + 激活成功教程补丁2008-03-2909:04推荐下载使用:金山词霸2009官方牛津版+激活成功教程补丁《金山词霸2009牛津版》收词总量5,000,000,例句2,000,000余条,涉及语种包括中、日、英、韩

  • 一致性hash算法java_一致性hash和普通hash

    一致性hash算法java_一致性hash和普通hash一致性hash算法(consistenthashing)张亮consistenthashing算法早在1997年就在论文Consistenthashingandrandomtrees中被提出,目前在cache系统中应用越来越广泛;1基本场景比如你有N个cache服务器(后面简称c

发表回复

您的电子邮箱地址不会被公开。

关注全栈程序员社区公众号