深度学习—3.Pytorch基础

深度学习—3.Pytorch基础

一、张量

(一)张量介绍

    张量(也可以叫做Tensors)是pytorch中数据存储和表示的一个基本数据结构和形式,它是一个多维数组,是标量、向量、矩阵的高维拓展。它相当于Numpy的多维数组(ndarrays),但是tensor可以应用到GPU上加快计算速度, 并且能够存储数据的梯度信息。
    维度大于2的一般称为高维张量。以计算机的图像处理数据为例
    3维张量,可以表示图像的:通道数×高×宽
    4维张量,通常表示图像的:样本数×通道数×高×宽

在这里插入图片描述

(二)张量的创建

①基于torch.tensor()创建张量

torch.tensor()创建张量共有8个属性:data、dtype、shape、device、requires_grad、grad、grad_fn

import torch
#创建张量
#参数data:可以为列表,或者数组
t1=torch.tensor([3,5])
print(t1)
print("类型",type(t1))
print("设备",t1.device)
print("要求梯度",t1.requires_grad)
print("梯度值",t1.grad)
print("梯度函数",t1.grad_fn)
print("是否为叶子",t1.is_leaf)#自动创建的为叶子True
运行结果:
tensor([3, 5])
类型 <class 'torch.Tensor'>
设备 cpu
要求梯度 False
梯度值 None
梯度函数 None
是否为叶子 True

②创建张量,修改数据类型,要求梯度

import torch
#创建张量,修改数据类型为float,增加梯度回传之后张量的变化
t1=torch.tensor([3,5],dtype=torch.float,requires_grad=True)
print(t1)
print("类型",type(t1))
print("设备",t1.device)
print("要求梯度",t1.requires_grad)
print("梯度值",t1.grad)
print("梯度函数",t1.grad_fn)
print("是否为叶子",t1.is_leaf)#自动创建的为叶子True
运行结果:
tensor([3., 5.], requires_grad=True)
类型 <class 'torch.Tensor'>
设备 cpu
要求梯度 True
梯度值 None
梯度函数 None
是否为叶子 True

③创建张量,非叶子(必须要求梯度,才可以)

import torch
#创建张量
t1=torch.tensor([3,5],dtype=torch.float,requires_grad=True)
t2=t1*10
print(t2)
print("类型",type(t2))#<class 'torch.Tensor'>
print("设备",t2.device)#cpu
print("要求梯度",t2.requires_grad)#False
print("梯度值",t2.grad)#None
print("梯度函数",t2.grad_fn)#Mul是加法等到的
#只有叶子可以计算梯度,不是叶子没有梯度,如果查看会出警告
print("是否为叶子",t2.is_leaf)#<Add>自动创建的为叶子True
运行结果:
tensor([30., 50.], grad_fn=<MulBackward0>)
类型 <class 'torch.Tensor'>
设备 cpu
要求梯度 True
梯度值 None
梯度函数 <MulBackward0 object at 0x000000000258E7B8>#Mul是加法等到的
是否为叶子 False

总结
(1)如果原始tensor是要求梯度,该tensor是一个叶子节点,基于该tensor的操作是个非叶子节点,没有梯度信息的
(2)如果原始tensor是不要求梯度,该tensor是一个叶子节点,基于该tensor的操作得到也是一个叶子节点

④利用Numpy创建张量

1、直接利用Numpy创建数组,转换为张量
import torch
import  numpy as np

#基于Numpy的创建Tensor
arr=np.array([1,2,3,6])
t1=torch.tensor(arr)
print(t1)
运行结果
tensor([1, 2, 3, 6], dtype=torch.int32)
2、修改原数组,看看张量与数组的关系

import torch
import  numpy as np
#基于Numpy的创建Tensor
arr=np.array([1,2,3,6])
t1=torch.tensor(arr)
print(t1)
arr[0]=1000
print('修改后'.center(60,'-'))
print("数组\n",arr)
print("tensor\n",t1)

tensor([1, 2, 3, 6], dtype=torch.int32)
----------------------------修改后-----------------------------
数组
 [1000    2    3    6]
tensor
 tensor([1, 2, 3, 6], dtype=torch.int32)
3、利用form_numpy创建张量,并修改和查看内存
import torch
import  numpy as np
#基于Numpy的创建Tensor
arr=np.array([1,2,3,6])
t1=torch.tensor(arr)
print(t1)
#如果使用from_numpy创建tensor,张量和数组共享内存,指向同一个共享
#张量和数组,一个变换,另一个也变换
t2=torch.from_numpy(arr)
arr[0]=1000
print('修改后'.center(60,'-'))
print("数组\n",arr,id(arr))
print("tensor\n",t2,id(arr))
运行结果:
tensor([1, 2, 3, 6], dtype=torch.int32)
----------------------------修改后-----------------------------
数组
 [1000    2    3    6] 4151456
tensor
 tensor([1000,    2,    3,    6], dtype=torch.int32) 4151456
4、利用form_numpy创建张量后进行修改,将张量转换为数组
import torch
import  numpy as np

#基于Numpy的创建Tensor
arr=np.array([1,2,3,6])
t2=torch.from_numpy(arr)
arr[0]=1000
t2[-1]=999
print('修改后'.center(60,'-'))
print("数组\n",arr,id(arr))
print("tensor\n",t2,id(arr))
#将tensor转换为数组
t2_arrr=t2.numpy()
print(t2_arrr, type(t2_arrr))
运行结果:
----------------------------修改后-----------------------------
数组
 [1000    2    3  999] 31348896
tensor
 tensor([1000,    2,    3,  999], dtype=torch.int32) 31348896
[1000    2    3  999] <class 'numpy.ndarray'>

二、梯度

只有x是叶子节点,其他节点y、z都是被动生成的,通过out.backward()进行反向传播

import torch
#x是叶子节点
x=torch.ones((2,2),requires_grad=True)
print(x)
y=x+2

z=y*y*3
print(y)
print(z)
out=z.mean()
print(out)
#在进行反向传播之前,查看x的梯度
print("x的梯度before",x.grad)
#反向传播
out.backward()
#只有叶子节点才能计算梯度,查看x的梯度
print("x的梯度",x.grad)
运行结果:
tensor([[1., 1.],
        [1., 1.]], requires_grad=True)
tensor([[3., 3.],
        [3., 3.]], grad_fn=<AddBackward0>)
tensor([[27., 27.],
        [27., 27.]], grad_fn=<MulBackward0>)
tensor(27., grad_fn=<MeanBackward0>

x的梯度before None

x的梯度 tensor([[4.5000, 4.5000],
        [4.5000, 4.5000]])

三、反向传播

利用一个具体环境,理解反向传播:
已知房屋的面积与价格成正比例关系,利用通过已知的真实价格与

import torch

#设置随机种子,使得随机数不发生变换
torch.manual_seed(1)
#面积
x=torch.randint(low=10,high=40,size=(10,1))
#print(x)

#价格
y=5*x+torch.randn(10,1)
#y=5*x+torch.linspace(-0.002,0.002,100).reshape(-1,1)
#print(y)

#寻找w,b
#随机制订w,b
#w=torch.randn([2.0],requires_grad=True)#权重,要求梯度,才能回传
w=torch.tensor([2.0],requires_grad=True)
#b=torch.randn(1,requires_grad=True)#偏执,要求梯度,才能回传
b=torch.zeros(1,requires_grad=True)

#定义学习率
lr=0.0001
for epoch in range(5000):
    # wx=w*x+b
    #print(wx)
    y_pred=w*x+b
    #回归问题:1*2((y_pred-y)**2)
    #均方误差
    loss=0.5*(((y_pred-y)**2).mean())#很多值
    #print(loss)
    #print("w之前的梯度", w.grad)
    loss.backward()
    #print("w的梯度",w.grad)
    #更新梯度
    #w = w - lr * w.grad
    w.data= w.data - lr * w.grad
    #b = b - lr * b.grad
    b.data = b.data - lr * b.grad
    #结束条件
    print("第{}次的loss={}".format(epoch,loss))
    print("第{}次的w={},b={}:".format(epoch, w.grad, b.grad))
    if loss.data.numpy()<1:
        break

print("最终的w和b",w,b)

import matplotlib.pyplot as plt
plt.scatter(x.data.numpy(),y.data.numpy())
#plt.plot(x.data.numpy,(w*x+b).data.numpy())
plt.show()
0次的loss=3678.2663574218750次的w=tensor([-2451.6199]),b=tensor([-82.4380]):
第1次的loss=3101.1530761718751次的w=tensor([-4702.6914]),b=tensor([-158.1258]):
第2次的loss=2131.903808593752次的w=tensor([-6569.0713]),b=tensor([-220.8654]):
第3次的loss=1081.17980957031253次的w=tensor([-7898.0845]),b=tensor([-265.5179]):
第4次的loss=285.75778198242194次的w=tensor([-8581.0156]),b=tensor([-288.4241]):
第5次的loss=0.58497250080108645次的w=tensor([-8561.9990]),b=tensor([-287.7038]):
最终的w和b tensor([5.8764], requires_grad=True) tensor([0.1303], requires_grad=True)

在这里插入图片描述

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/114571.html原文链接:https://javaforall.cn

【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛

【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...

(0)


相关推荐

  • 配置sshd_config中的PermitRootLogin设置root登录或者禁止root登录

    配置sshd_config中的PermitRootLogin设置root登录或者禁止root登录在etc的sshd_config文件中,默认有PermitRootLoginno的配置,这个的意思是禁止root用户登录,如果想要允许root登录,需要suroot用户到sshd_config下进行修改,需要把PermitRootLoginno改成PermitRootLoginyes,修改完成之后,需要重新启动ssh服务才生效,重启命令如下:servicesshdrestart…

  • 压缩文件密码暴力破解——cRARk使用方法

    压缩文件密码暴力破解——cRARk使用方法cRARk使用方法压缩文件如果忘记密码就需要使用暴力破解的方法进行破解,因为使用了加密的手段,是无法绕过密码验证的。cRARk是一款开源的功能强大的rar,7z类压缩软件的破解工具,支持GPU加速。官网地址目前有命令行版本和windows的GUI版本。使用方法在官网下载命令行版本GUI版本注意:GUI版本必须有命令行版本下才能运行GUI使用命令行版本下载解压,提示需要输入密码,但是实际上密码为空。或者为UTF-16。(crark55.rar)然后解压GUI版本,里面只有一个可运

  • OPC服务器比较

    OPC服务器比较目前支持OPC服务器的组态软件有很多种,其中四种软件即:Intellution公司的iFIX(3.5)、GE公司的Cimplicity(6.0)、Wonderware公司的InTouch(9.5)以及Siemens公司的WinCC(6.0)应用最广、功能最强。Intellution公司和Wonderware公司是专门从事监控软件工作的,在市场占领绝大部分份额;Cimplicity和WinCC是GE

  • Android之ListView原理学习与优化总结

    Android之ListView原理学习与优化总结

  • 关于 IPv6 你需要知道的 10 件事

    关于 IPv6 你需要知道的 10 件事

  • Vue上传文件操作(没有CV,认真看)

    Vue上传文件操作(没有CV,认真看)项目场景: 通过vue上传文件基本操作问题描述:使用html上传文件时,很容易理解,那么vue文件上传呢?我们学了vue不可能还往里面写原生html的内容吧!先放代码再解释:<template><div><el-form:model=”form”><el-uploadaction=”url”:auto-upload=”false”:on-change=”onchanger”:fil

    2022年10月10日

发表回复

您的电子邮箱地址不会被公开。

关注全栈程序员社区公众号