python+opencv的图像学基础以及简单的人脸识别

python+opencv的图像学基础以及简单的人脸识别

一、列表

list(),int()都属于强制类型转化,将字符串转化为list列表
一维数组 a=[1 2 3 4 5 6]
a[4]=5
二维数组 b=[[1 2][3 4][5 6][7 8]]
b[1][1]=4
三维数组 c=[[[1 2][3 4]][[5 6][7 8]]]
c[1][1][1]=8

二、图像转字符画

目的:将图像转化按照列表格式输出

show_height=40#纵向打印字符数
show_width=40#横向打印字符数
ascii_char=list("$@B%8&WM#*oahkbdpqwmZO0QLCJUYXzcvunxrjft/\|()1{}[]?-_+~<>i!lI;:,\"^`'. ")
print(ascii_char[10])
#读取图片
pic=cv2.imread("E:/Literature/material/121398.jpg")
print(type(pic))
#<class 'numpy.ndarray'>
#图像灰度化
gray=pic[:,:,0]*0.2+pic[:,:,1]*0.7+pic[:,:,2]*0.1
print(gray)
print(len(gray))#长
print(len(gray[0]))#宽
pic_height,pic_width,pic_c=pic.shape
print(pic_height)
print(pic_width)
for i in range(show_height):
    y=int(i*pic_height/show_height)#获取真实图片上某个像素点的纵坐标
    text = ""
    for j in range(show_width):
        x = int(j * pic_width / show_width)  # 获取真实图片上某个像素点的横坐标
        text+=ascii_char[int(gray[y][x]/256*len(ascii_char))]
    print(text)
#结果
vvccvvvuvvvvvqcvvvvvcvvvvccccccvvvvvvvvv#每行四十的字符
uvvvuuuuuuvvuUXuvcvvvvvvcvccvcvvvvvvvvvv
uuuuuuuvuuuuv1fvvvvvvvvvvvcvvvvvvvvvvvuu
uunuuuuuuuuucYjuuuuuuuuuuuuvuuuuuuuuuuuv
nnnnnnnnnuuuucJunnuununuuuuucLuuunuunnun
xnnxnnnnnnqnJYuznxnnnnnunnnnQ_nnnuuunnnn
xxxxxxxxxxYxrcmx/xxxxxnnnnxnvvunnxnxxxxx
rrrrrrrrrr0cZxM{
|rxxxxxxxxxxUz|xxrxxnxxx
jrjjrrrjjrkwJfOUUrnrrrrrrrrrLoz0rxrrxrrr
fjfjfjjjjqqUzaf*OoUjrjjjrrj10czLrrrrrrrr
ffffffffj*hU$Yjcr/cjjjjjjjrmnXxUxjjjjjjj
/ttttttttokQOnppJ@O|jffffjrbtcvprjffjjff
///////tWq%0zU#mbkzYfttttf/pz%80btCftfff
\\\\\/\|b8WCXXr0mQXtt//tt\CqqptxZbuftttt
|||\|\|\hMCYUjnjjrct\/\/f\CdWpdrZQ*|/\\\
(((||||\QdkYXxfcnxv\\\\\l)ok$%cYOpkQ/\\|
))((((((mZbcYYmaL\c\||||-X@d8wvuuQ0n\|||
11)))))(qQXXYY0uXfX((((urcYbWpznXUuz)(((
{
{
{
11111mzUUUJcccnY11j/{
|qbpMWYvOqvz()))
}{
{
{
{
{
1{
OUYOQXuz0uY)?twpXMqoLBXcXUZJ(111
}}}}}}}1OYm0Jz[t/tzJ)cX#vcrmp@rxzUcq1{
{
{

[[[[[[[Zz@Y0CupdpLwf*z*p000zmatqJJXC{
[}}
]]]][]]ZY|*%pj(txuJ)vh/fC.jtrLqZtx0n/[[[
-?????-ZO$QwzMZjjbobvXrf)xxuxbkn#fJxU}]]
------]8hWLZcr\cxrZvJrXL@xBUz0JMqcn/0[??
_--_---wcOcQntJ(vnmcCc#8JOJYcUfCr08CdX--
___+[f/QvLUJJv@aYtqrtjjOo\0CXrj0xJOckc_-
_+_~zLO0uuJYx\znr|wrUX\+qUJOrL0puUzvqr_-
|fCYJo#YxjXUqfXrx\QnC|\|Y}n/j\WujzxYmp~~
8cqB8/mOrOXYXbQc|{
n0r1|(t\fn/tJn(uUmjZi~
XWmjY/qcoQYznr){
rYr|txttuCXxzQZJf[{
1/cq}
XQzUpCZzr?(Ltr))(/u/jxz0un(rftt\mvffbtU+
QadzLnaZ$0vJnWLut|Z|tOdJnxh%8&d)%&|(1jt>
0JCxM%zvWmvLnu|bjfznrjfx|nzf|tx}QjLnXQ/k
(YbjMUQvvmxOnfX[ttXfxjtva}<aY\QtCj/n|Lx)
UXXXkQUXcOnLnjujfjXxnrcj(0j[OQO/Yj)Qf0UJ
z!cYrcXcYLjJut*&*xjx/xC[\hba{
bUnXfmUJLCc
v<vCjuCzzCrJxz--mcrn\xYrn@J/xczXxf++Zxdr
v(uxxnJz(CjYju$@Yux/f/XtfxwJQUrQt{
$1v\Qj
cxzu}zYXcUrUtv@@$jfXnuYUdQCZCCuv|u&*c)Of

三、opencv的简单使用

OpenCV是一个基于BSD许可(开源)发行的跨平台计算机视觉和机器学习软件库,
可以运行在Linux、Windows、Android和Mac OS操作系统上。
它轻量级而且高效——由一系列 C 函数和少量 C++ 类构成,
同时提供了Python、Ruby、MATLAB等语言的接口,
实现了图像处理和计算机视觉方面的很多通用算法。
3.1显示图片

import cv2
#绝对路径
img=cv2.imread('E:/Literature/material/personal/12.png')
#相对路径
cv2.imread(./image/12.png)
#打印图像数组
print(img)
#打印图像长宽和像素#bgr格式
print(img.shape)
cv2.imshow("student",img)
#让cv2的类型进行等待,不会闪退,我们可以去设置时间让图像延迟关闭,数字代表停留时间,ms级
#括号里写等待时间
cv2.waitKey()
#释放资源
cv2.destroyAllWindows()

运行结果
在这里插入图片描述
3.2改变图像大小和黑白图

import cv2
img=cv2.imread('E:/Literature/material/personal/2.jpg')#绝对路径
#改变图像大小和黑白图
gray=cv2.cvtColor(img,code=cv2.COLOR_BGR2GRAY)
#将图像进行黑白图转换
#三维数字变为二维数组
cv2.imshow("student",gray)
cv2.waitKey()
cv2.destroyAllWindows()
#更改图像大小
imgresize=cv2.resize(gray,dsize=(222,222))
cv2.imshow("student_resize",imgresize)
cv2.waitKey()
cv2.destroyAllWindows()

运行结果
在这里插入图片描述
在这里插入图片描述
3.3图像剪裁

import cv2
img=cv2.imread('E:/Literature/material/personal/2.jpg')#绝对路径
#剪裁
#将图像从横范围第一个像素,取到222,纵坐标从1取到222.
imgjc=img[:222,:222]
cv2.imshow("imgjc",imgjc)
cv2.waitKey()
cv2.destroyAllWindows()
#图片的切片使用
#将图像从横范围111,取到222,纵坐标从1取到222.
imgqp=img[111:222,:222]
cv2.imshow("imgqp",imgqp)
cv2.waitKey()
cv2.destroyAllWindows()

运行结果
在这里插入图片描述
在这里插入图片描述

四、简单的人脸识别

import cv2
img=cv2.imread('E:/Literature/material/personal/2.jpg')#绝对路径
#人脸的识别,保证人脸图片清晰,要尽量选择正脸进行识别
#导入cv2中人脸特征数据的数据包,里面都是人脸特征数据
#在python环境中,有已经集成好的训练文件,位置lib—>site-packages—>cv2—>data—>haarcascade_frontalface_alt.xml
#获取你的特征数据包
face_date=cv2.CascadeClassifier("E:/python3.6.8/Lib/site-packages/cv2/data/haarcascade_frontalface_alt.xml")
#图像,缩放距离,最小间距
faces=face_date.detectMultiScale(img,scaleFactor=1.1,minNeighbors=5)
#随着返回着二维数组里外维度下元素的个数表示识别人脸的个数
print(faces)#表示距离图像边缘的距离
for x,y,w,h in faces:
#画矩形
#人脸图像,人脸方框的初始位置,人脸方框的末尾坐标,边框颜色
cv2.rectangle(img,pt1=(x,y),pt2=(x+w,y+h),color=[255,0,0])
cv2.imshow("faces",img)
cv2.waitKey(0)
cv2.destroyAllWindows()

运行结果
[[ 90 137 62 62]]
在这里插入图片描述

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/114477.html原文链接:https://javaforall.cn

【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛

【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...

(0)
blank

相关推荐

  • java illegal character_java.lang.illegalaccesserror

    java illegal character_java.lang.illegalaccesserror本文整理匯總了Java中org.apache.commons.lang3.ArrayUtils.isNotEmpty方法的典型用法代碼示例。如果您正苦於以下問題:JavaArrayUtils.isNotEmpty方法的具體用法?JavaArrayUtils.isNotEmpty怎麽用?JavaArrayUtils.isNotEmpty使用的例子?那麽恭喜您,這裏精選的方法代碼示例或許可以為…

  • SFTP指定端口号登陆——Linux学习

    SFTP指定端口号登陆——Linux学习sftp-oPort=60001root@192.168.0.254使用-o选项来指定端口号.-oPort=远程端口号

  • 最大共识面临崩塌?比特币要增发?

    最大共识面临崩塌?比特币要增发?白话区块链从入门到精通,看我就够了!两天前,江卓尔的一条微博,一石激起千层浪。原文是这样的:比特币Core下一目标是增发比特币,修改其上限2100万,停止减半。没错,不要…

  • unsigned int数据范围16位_unsigned int几个字节

    unsigned int数据范围16位_unsigned int几个字节提到unsigned,大家应该都了解,有朋友问c语言中unsigned什么意思,还有人想问c语言中的unsigned是什么意思,这到底是咋回事?事实上unsigned呢,下面是小编推荐给大家的unsignedint,下面我们一起来看看吧!unsignedint一、指代不同1、int:定义整数类型变量的标识符。2、unsignedint:需声明无符号类型的话就需要在类型前加上unsigned。…

  • swagger标签详解

    swagger标签详解

  • 多模态综述

    多模态综述多模态综述介绍参考文献:《MultimodalMachineLearning:ASurveyandTaxonomy》介绍我们身边的环境就是一个多模态的环境,看到的实体、听到的声音、闻到的气味和尝到的味觉。本篇综述不是着重于多模态的应用,而是重点关注多模态的方法和技术。多模态问题的定义在于数据来源是不同模态的数据,而这些数据具有异质性(heterogeneity),则带来了多模态的五个挑战:representation,translation,alignment,fusion和co-

发表回复

您的电子邮箱地址不会被公开。

关注全栈程序员社区公众号