[LeetCode] Top K Frequent Elements 前K个高频元素

[LeetCode] Top K Frequent Elements 前K个高频元素

大家好,又见面了,我是全栈君。

Given a non-empty array of integers, return the k most frequent elements.
For example,
Given [1,1,1,2,2,3] and k = 2, return [1,2].
Note:
You may assume k is always valid, 1 ≤ k ≤ number of unique elements.
Your algorithm’s time complexity must be better than O(n log n), where n is the array’s size.

这道题给了我们一个数组,让我们统计前k个高频的数字,那么对于这类的统计数字的问题,首先应该考虑用哈希表来做,建立数字和其出现次数的映射,然后再按照出现次数进行排序。我们可以用堆排序来做,使用一个最大堆来按照映射次数从大到小排列,在C++中使用priority_queue来实现,默认是最大堆,参见代码如下:

解法一:

class Solution {
public:
    vector<int> topKFrequent(vector<int>& nums, int k) {
        unordered_map<int, int> m;
        priority_queue<pair<int, int>> q;
        vector<int> res;
        for (auto a : nums) ++m[a];
        for (auto it : m) q.push({it.second, it.first});
        for (int i = 0; i < k; ++i) {
            res.push_back(q.top().second); q.pop();
        }
        return res;
    }
};

我们还可以使用桶排序,在建立好数字和其出现次数的映射后,我们按照其出现次数将数字放到对应的位置中去,这样我们从桶的后面向前面遍历,最先得到的就是出现次数最多的数字,我们找到k个后返回即可,参见代码如下:

解法二:

class Solution {
public:
    vector<int> topKFrequent(vector<int>& nums, int k) {
        unordered_map<int, int> m;
        vector<vector<int>> bucket(nums.size() + 1);
        vector<int> res;
        for (auto a : nums) ++m[a];
        for (auto it : m) {
            bucket[it.second].push_back(it.first);
        }
        for (int i = nums.size(); i >= 0; --i) {
            for (int j = 0; j < bucket[i].size(); ++j) {
                res.push_back(bucket[i][j]);
                if (res.size() == k) return res;
            }
        }
        return res;
    }
};

本文转自博客园Grandyang的博客,原文链接:前K个高频元素[LeetCode] Top K Frequent Elements ,如需转载请自行联系原博主。

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/107827.html原文链接:https://javaforall.cn

【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛

【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...

(0)


相关推荐

发表回复

您的电子邮箱地址不会被公开。

关注全栈程序员社区公众号