26524中位数第二人生_计数原理与排列组合是选修几

26524中位数第二人生_计数原理与排列组合是选修几洛谷P2606 [ZJOI2010]排列计数(组合数 dp)

大家好,又见面了,我是你们的朋友全栈君。

题意

题目链接

称一个1,2,…,N的排列P1,P2…,Pn是Magic的,当且仅当2<=i<=N时,Pi>Pi/2. 计算1,2,…N的排列中有多少是Magic的,答案可能很大,只能输出模P以后的值

Sol

这辈子做不出的计数系列。

一眼小根堆没啥好说的。最关键的一点是:树的形态是可以递推出来的。

那么当前点$i$为根节点,大小为$siz[i]$,左/右儿子分别为$ls, rs$

那么$f[i] = C_{siz[i] – 1}^{siz[ls]} f[ls] \times f[rs]$

Lucas定理算组合数

#include<cstdio>
//#define int long long 
using namespace std;
const int MAXN = 1e6 + 10;
inline int read() {
    char c = getchar(); int x = 0, f = 1;
    while(c < '0' || c > '9') {
   
   if(c == '-') f = -1; c = getchar();}
    while(c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
    return x * f;
}
int N, P, fac[MAXN] = {
   
   1}, ifac[MAXN], siz[MAXN], f[MAXN];
int fastpow(int a, int p, int mod) {
    int base = 1;
    while(p) {
        if(p & 1) base = (1ll * base % mod * a % mod) % mod;
        a = (1ll * a % mod * a % mod) % mod; p >>= 1;
    }
    return base % mod;
}
int C(int N, int M, int P) {
    if(M > N) return 0;
    return 1ll * fac[N] % P * ifac[M] % P * ifac[N - M] % P;
}
int Lucas(int N, int M, int P) {
    if(!N || !M) return 1;
    return Lucas(N / P, M / P, P) * C(N % P, M % P, P);    
}
main() {
    N = read(); P = read();
    for(int i = 1; i <= N; i++) fac[i] = 1ll * i * fac[i - 1] % P;
    ifac[N] = fastpow(fac[N], P - 2, P);
    for(int i = N; i >= 1; i--) ifac[i - 1] = 1ll * i * ifac[i] % P;
    for(int i = N; i >= 1; i--) {
        siz[i] = 1;
        int ls = (i << 1), rs = (i << 1 | 1);
        if(rs <= N) siz[i] += siz[ls] + siz[rs], f[i] = 1ll * Lucas(siz[i] - 1, siz[ls], P) * f[ls] % P * f[rs] % P;    
        else if(ls <= N) siz[i] += siz[ls], f[i] = f[ls];
        else f[i] = 1;
    }
    printf("%d", f[1]);
    return 0;
}
/*
999999 1000000007
*/

 

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/107306.html原文链接:https://javaforall.cn

【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛

【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...

(0)


相关推荐

发表回复

您的电子邮箱地址不会被公开。

关注全栈程序员社区公众号