OpenCV 估算图像的投影关系:基础矩阵和RANSAC[通俗易懂]

OpenCV 估算图像的投影关系:基础矩阵和RANSAC[通俗易懂]OpenCV 估算图像的投影关系:基础矩阵和RANSAC

大家好,又见面了,我是你们的朋友全栈君。

根据针孔摄像机模型,我们可以知道,沿着三维点X和相机中心点之间的连线,可以在图像上找到对应的点x。反过来,在三维空间中,与成像平面上的位置x对应的场景点可以位于这条线上的所有位置。这说明如果要根据图像中的一个点找到另一幅图像中对应的点,就需要在第二个成像平面上沿着这条线的投影搜索,这条线成为对极线,在这里是 l’ 。另外,所有的对极线都通过同一个点,这个点成为极点,这是图中的 ee’。那么这时,出来了一个矩阵F,称为基础矩阵

img_f2ab32a0fb97cd50344592b7ac5a1c0b.png

两个针孔摄像机观察同一个场景点

1.基础矩阵

一个场景中的一个空间点在不同视角下的像点存在一种约束关系,称为对极约束。基础矩阵就是这种约束关系的代数表示。它具体表示的是图像中的像点 p1 到另一幅图像对极线 l2 的映射,有如下公式

img_48dda1f9ed3679e40acc3b0c00e44427.png

映射

而和像点
p1 匹配的另一个像点
p2必定在对集线
l2上,所以有

img_626305c702f0e7605d5829978e3350bf.png

两个视角下同一个场景点的像点之间的关系

基础矩阵是一个 3×3 的矩阵,且使用的是齐次坐标系,所以可以用8个匹配的特征点来求解出基础矩阵F。这种方法称为
8点法(Eight-Point-Algorithm)。在数学上,所有对极线都穿过极点,对矩阵产生了一个约束条件。使用这个约束条件,可以只用7组匹配点进行计算。用术语来讲,就是基础矩阵有7个自由度。相应这种方法称为7点法。

代码实现如下

/********************************************************************
 * Created by 杨帮杰 on 10/7/18
 * Right to use this code in any way you want without
 * warranty, support or any guarantee of it working
 * E-mail: yangbangjie1998@qq.com
 * Association: SCAU 华南农业大学
 ********************************************************************/

#include <iostream>
#include <vector>
#include <opencv2/core.hpp>
#include <opencv2/imgproc.hpp>
#include <opencv2/highgui.hpp>
#include <opencv2/features2d.hpp>
#include <opencv2/calib3d.hpp>
#include <opencv2/objdetect.hpp>
#include <opencv2/xfeatures2d.hpp>

#define CHURCH01 "/home/jacob/图片/images/church01.jpg"
#define CHURCH02 "/home/jacob/图片/images/church02.jpg"
#define CHURCH03 "/home/jacob/图片/images/church03.jpg"

using namespace cv;
using namespace std;

int main()
{
    Mat image1= imread(CHURCH01,0);
    Mat image2= imread(CHURCH02,0);
    if (!image1.data || !image2.data)
        return 0;

    imshow("Right Image",image1);
    imshow("Left Image",image2);

    //检测并匹配SIFT描述子
    vector<KeyPoint> keypoints1;
    vector<KeyPoint> keypoints2;
    Mat descriptors1, descriptors2;

    Ptr<Feature2D> ptrFeature2D = xfeatures2d::SIFT::create(74);

    ptrFeature2D->detectAndCompute(image1, noArray(), keypoints1, descriptors1);
    ptrFeature2D->detectAndCompute(image2, noArray(), keypoints2, descriptors2);

    cout << "Number of SIFT points (1): " << keypoints1.size() << endl;
    cout << "Number of SIFT points (2): " << keypoints2.size() << endl;

    Mat imageKP;
    drawKeypoints(image1,keypoints1,imageKP,
                  Scalar(255,255,255),DrawMatchesFlags::DRAW_RICH_KEYPOINTS);
    imshow("Right SIFT Features",imageKP);

    drawKeypoints(image2,keypoints2,imageKP,
                  Scalar(255,255,255),DrawMatchesFlags::DRAW_RICH_KEYPOINTS);
    imshow("Left SIFT Features",imageKP);

    //使用交叉验证
    BFMatcher matcher(NORM_L2,true);

    vector<DMatch> matches;
    matcher.match(descriptors1,descriptors2, matches);

    cout << "Number of matched points: " << matches.size() << endl;

    // 手工选择配对成功的七组匹配,有点麻烦
    vector<DMatch> selMatches;

    selMatches.push_back(matches[8]);
    selMatches.push_back(matches[21]);
    selMatches.push_back(matches[15]);
    selMatches.push_back(matches[17]);
    selMatches.push_back(matches[22]);
    selMatches.push_back(matches[27]);
    selMatches.push_back(matches[29]);

    Mat imageMatches;
    drawMatches(image1,keypoints1,  // 1st image and its keypoints
                image2,keypoints2,  // 2nd image and its keypoints
                selMatches,         // the selected matches
                imageMatches,       // the image produced
                Scalar(255,255,255),
                Scalar(255,255,255),
                vector<char>(),
                2);

    imshow("Matches",imageMatches);

    //根据筛选出的匹配得到对应点的index
    vector<int> pointIndexes1;
    vector<int> pointIndexes2;
    for (vector<DMatch>::const_iterator it= selMatches.begin();
         it!= selMatches.end(); ++it)
    {
        pointIndexes1.push_back(it->queryIdx);
        pointIndexes2.push_back(it->trainIdx);
    }

    //将KeyPoint类型转换为Point2f类型
    //根据pointIndexes来筛选需要转换的点,相当于掩膜(Mask)
    vector<Point2f> selPoints1, selPoints2;
    KeyPoint::convert(keypoints1,selPoints1,pointIndexes1);
    KeyPoint::convert(keypoints2,selPoints2,pointIndexes2);

    //在筛选出的点的位置上画圈
    vector<Point2f>::const_iterator it= selPoints1.begin();
    while (it!=selPoints1.end())
    {
        circle(image1,*it,3,Scalar(255,255,255),2);
        ++it;
    }

    it= selPoints2.begin();
    while (it!=selPoints2.end())
    {
        circle(image2,*it,3,Scalar(255,255,255),2);
        ++it;
    }

    //根据7对匹配来计算基础矩阵
    Mat fundamental= findFundamentalMat(
        selPoints1, // points in first image
        selPoints2, // points in second image
        FM_7POINT);       // 7-point method

    cout << "F-Matrix size= " << fundamental.rows << "x" << fundamental.cols << endl;

    //根据基础矩阵的匹配点计算对极线
    vector<Vec3f> lines1;
    computeCorrespondEpilines(
        selPoints1, // image points
        1,                   // in image 1 (can also be 2)
        fundamental, // F matrix
        lines1);     // vector of epipolar lines


    //画出左右图像的对极线
    for (vector<Vec3f>::const_iterator it= lines1.begin();
         it!=lines1.end(); ++it)
    {
        line(image2,Point(0,-(*it)[2]/(*it)[1]),
            Point(image2.cols,-((*it)[2]+(*it)[0]*image2.cols)/(*it)[1]),
            Scalar(255,255,255));
    }

    vector<Vec3f> lines2;
    computeCorrespondEpilines(Mat(selPoints2),2,fundamental,lines2);
    for (vector<Vec3f>::const_iterator it= lines2.begin();
         it!=lines2.end(); ++it)
    {
        line(image1,Point(0,-(*it)[2]/(*it)[1]),
            Point(image1.cols,-((*it)[2]+(*it)[0]*image1.cols)/(*it)[1]),
            Scalar(255,255,255));
    }

    //拼接两幅图像
    Mat both(image1.rows,image1.cols+image2.cols, CV_8U);
    image1.copyTo(both.colRange(0, image1.cols));
    image2.copyTo(both.colRange(image1.cols, image1.cols+image2.cols));

    imshow("Epilines",both);

    waitKey();
    return 0;
}

结果如下

img_3dd8623d590096898e14363ea8be9265.png

7点法估算基础矩阵

这里需要手工选出7组正确的匹配项,不然就会有严重偏差。这个是挺蛋疼的。

2.RANSAC(随机采样一致性)

使用极线约束,可以使特征点的匹配更加可靠。遵循的原则很简单:在匹配两幅图像的特征时,只接收位于对极线上的匹配项。若要判断是否满足这个条件,必须先知道基础矩阵,但计算基础矩阵又需要优质的匹配项。对于这种困境,可以使用RANSAC(Random Sample Consensus)算法来解决。

上面说到,基础矩阵的计算要求特征点的匹配是正确的,但在实际情况中是难以保证的。RANSAC的思想是:支撑集越大(这里是指符合极线约束的匹配项),那么矩阵正确的可能性越大,反之如果一个或多个随机选取的匹配项是错误的,那么基础矩阵的计算也是有问题的,支撑集会相对较少。RANSAC反复随机选取匹配项,并留下支撑集最大的矩阵作为最佳结果。

假设优质匹配项的比例是ϖ,那么选取n个优质匹配项的概率是ϖ的n次方。那么n个点至少有一个是外点的概率为

img_09b5838854133345b8e5176c86758ef1.png

n个点至少有一个是外点的概率

迭代k次均得不到正确模型的概率为

img_b9fbbb8dbeb9e2fdd4248a922a4d1a42.png

迭代k次均不正确

显然,迭代次数越多,这个概率就会越小。代码实现如下

/********************************************************************
 * Created by 杨帮杰 on 10/7/18
 * Right to use this code in any way you want without
 * warranty, support or any guarantee of it working
 * E-mail: yangbangjie1998@qq.com
 * Association: SCAU 华南农业大学
 ********************************************************************/

#include <iostream>
#include <vector>
#include <opencv2/core.hpp>
#include <opencv2/imgproc.hpp>
#include <opencv2/highgui.hpp>
#include <opencv2/features2d.hpp>
#include <opencv2/calib3d.hpp>


#define CHURCH01 "/home/jacob/图片/images/church01.jpg"
#define CHURCH02 "/home/jacob/图片/images/church02.jpg"
#define CHURCH03 "/home/jacob/图片/images/church03.jpg"

#define IS_REFINE_FUNDA 1
#define IS_REFINE_MATCHES 1

using namespace cv;
using namespace std;

int main()
{
    Mat image1= imread(CHURCH01,0);
    Mat image2= imread(CHURCH03,0);

    if (!image1.data || !image2.data)
        return 0;

    //检测并匹配SIFT描述子
    vector<KeyPoint> keypoints1;
    vector<KeyPoint> keypoints2;
    Mat descriptors1, descriptors2;

    Ptr<Feature2D> ptrFeature2D = xfeatures2d::SIFT::create(100);

    ptrFeature2D->detectAndCompute(image1, noArray(), keypoints1, descriptors1);
    ptrFeature2D->detectAndCompute(image2, noArray(), keypoints2, descriptors2);

    cout << "Number of SIFT points (1): " << keypoints1.size() << endl;
    cout << "Number of SIFT points (2): " << keypoints2.size() << endl;

    Mat imageKP;
    drawKeypoints(image1,keypoints1,imageKP,
                  Scalar(255,255,255),DrawMatchesFlags::DRAW_RICH_KEYPOINTS);
    imshow("Right SIFT Features",imageKP);

    drawKeypoints(image2,keypoints2,imageKP,
                  Scalar(255,255,255),DrawMatchesFlags::DRAW_RICH_KEYPOINTS);
    imshow("Left SIFT Features",imageKP);

    //使用交叉验证
    BFMatcher matcher(NORM_L2,true);

    vector<DMatch> matches;
    matcher.match(descriptors1,descriptors2, matches);

    vector<Point2f> points1, points2;

    for (vector<DMatch>::const_iterator it= matches.begin();
         it!= matches.end(); ++it)
    {
         points1.push_back(keypoints1[it->queryIdx].pt);
         points2.push_back(keypoints2[it->trainIdx].pt);
    }

    //使用RANSAC算法计算基础矩阵
    //inliers相当于一个掩膜
    vector<uchar> inliers(points1.size(),0);
    Mat fundamental= findFundamentalMat(
                points1,points2, // matching points
                inliers,         // match status (inlier or outlier)
                FM_RANSAC,
                1.0,      // distance to epipolar line
                0.99     // confidence probability
                );

    //提取合格的匹配项
    vector<uchar>::const_iterator itIn= inliers.begin();
    vector<DMatch>::const_iterator itM= matches.begin();
    vector<DMatch> outMatches;
    // for all matches
    for ( ;itIn!= inliers.end(); ++itIn, ++itM)
    {
        if (*itIn == true)
        {
            outMatches.push_back(*itM);
        }
    }

    if (IS_REFINE_FUNDA || IS_REFINE_MATCHES)
    {
        //使用RANSAC得出的高质量匹配点再次估算基础矩阵
        points1.clear();
        points2.clear();

        //得到高质量匹配点的坐标
        for (vector<DMatch>::const_iterator it= outMatches.begin();
             it!= outMatches.end(); ++it)
        {
             points1.push_back(keypoints1[it->queryIdx].pt);
             points2.push_back(keypoints2[it->trainIdx].pt);
        }

        //用八点法计算基础矩阵
        fundamental= findFundamentalMat(
            points1,points2, // matching points
            FM_8POINT); // 8-point method

        if (IS_REFINE_MATCHES)
        {
            //用基础矩阵来矫正匹配点的位置
            vector<Point2f> newPoints1, newPoints2;

            correctMatches(fundamental,             // F matrix
                           points1, points2,        // original position
                           newPoints1, newPoints2); // new position

            for (int i=0; i< points1.size(); i++)
            {

                cout << "(" << keypoints1[outMatches[i].queryIdx].pt.x
                     << "," << keypoints1[outMatches[i].queryIdx].pt.y
                     << ") -> ";

                cout << "(" << newPoints1[i].x
                     << "," << newPoints1[i].y << endl;

                cout << "(" << keypoints2[outMatches[i].trainIdx].pt.x
                     << "," << keypoints2[outMatches[i].trainIdx].pt.y
                     << ") -> ";

                cout << "(" << newPoints2[i].x
                     << "," << newPoints2[i].y << endl;

                keypoints1[outMatches[i].queryIdx].pt.x= newPoints1[i].x;
                keypoints1[outMatches[i].queryIdx].pt.y= newPoints1[i].y;

                keypoints2[outMatches[i].trainIdx].pt.x= newPoints2[i].x;
                keypoints2[outMatches[i].trainIdx].pt.y= newPoints2[i].y;
            }
        }
    }


    Mat imageMatches;
    drawMatches(image1,keypoints1,  // 1st image and its keypoints
                image2,keypoints2,  // 2nd image and its keypoints
                outMatches,         // the matches
                imageMatches,       // the image produced
                Scalar(255,255,255),  // color of the lines
                Scalar(255,255,255),  // color of the keypoints
                vector<char>(),
                2);

    imshow("Matches",imageMatches);

    for (vector<DMatch>::const_iterator it= matches.begin();
         it!= matches.end(); ++it)
    {
         //得到左图像特征点的位置并画圆
         float x= keypoints1[it->queryIdx].pt.x;
         float y= keypoints1[it->queryIdx].pt.y;
         points1.push_back(keypoints1[it->queryIdx].pt);
         circle(image1,Point(x,y),3,Scalar(255,255,255),3);

         //得到右图像特征点的位置并画圆
         x= keypoints2[it->trainIdx].pt.x;
         y= keypoints2[it->trainIdx].pt.y;
         points2.push_back(keypoints2[it->trainIdx].pt);
         circle(image2,Point(x,y),3,Scalar(255,255,255),3);

    }

    //画出两幅图像的对极线
    vector<Vec3f> lines1;
    computeCorrespondEpilines(points1,1,fundamental,lines1);

    for (vector<Vec3f>::const_iterator it= lines1.begin();
             it!=lines1.end(); ++it)
    {
        line(image2,Point(0,-(*it)[2]/(*it)[1]),
            Point(image2.cols,-((*it)[2]+(*it)[0]*image2.cols)/(*it)[1]),
            Scalar(255,255,255));
    }

    vector<Vec3f> lines2;
    computeCorrespondEpilines(points2,2,fundamental,lines2);

    for (vector<Vec3f>::const_iterator it= lines2.begin();
             it!=lines2.end(); ++it)
    {
        line(image1,Point(0,-(*it)[2]/(*it)[1]),
            Point(image1.cols,-((*it)[2]+(*it)[0]*image1.cols)/(*it)[1]),
            Scalar(255,255,255));
    }

    imshow("Right Image Epilines (RANSAC)",image1);
    imshow("Left Image Epilines (RANSAC)",image2);

    waitKey();
    return 0;
}

结果如下

img_1f5249d1f5623ec1ca46fda38d71474d.png

RANSAC得到的匹配项

img_8ba58be046ab844a8ae031216de3ddbd.png

用基础矩阵改善匹配项

可以看到,仍然会有不正确的匹配项,这主要是因为匹配点刚好在对极线上。可以通过混合使用之前提到过的一些匹配策略,如比率检测法,匹配差值的阈值化等方法继续改善。

References:
SLAM入门之视觉里程计(4):基础矩阵的估计
SLAM入门之视觉里程计(3):两视图对极约束 基础矩阵
opencv计算机视觉编程攻略(第三版) —— Robert Laganiere

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/107275.html原文链接:https://javaforall.cn

【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛

【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...

(0)
blank

相关推荐

  • MS-SQLSERVER中的MSDTC不可用解决方法

    MS-SQLSERVER中的MSDTC不可用解决方法

    2021年12月14日
  • kali linux切换更新源_Kali Linux 更新源 操作完整版教程

    kali linux切换更新源_Kali Linux 更新源 操作完整版教程一、查看kali系统的更新源地址文件命令:vim/etc/apt/sources.list上面这是kali官方的更新源;拓展知识:一个完整的源包括:deb和deb-src;上图源地址是:http://http.kali.org/;图中的kali-rolling是kali目前最新的代号,kali有两个代号(codename):sana和kali-rolling。打开http://http.ka…

  • python allure的介绍和使用(持续更新中)

    python allure的介绍和使用(持续更新中)1、allure的介绍2、allure的报告概览3、allure的安装4、使用allure2生成更加精美的测试报告pipinstallallure-pytest(安装这个辅助allure生成测试报告)pytest–alluredir=指定路径(指定allure报告数据生成路径)allureserve报告路径(生成HTML报告,这个会直接在线打开报告)allur…

  • MySQL数据库:explain执行计划详解

    MySQL数据库:explain执行计划详解

  • 如何查看端口号被占用情况_怎么查端口被哪个程序占用了

    如何查看端口号被占用情况_怎么查端口被哪个程序占用了最近在工作上Ranorex自动化测试工具老是连不上服务器,经检查发现服务器的端口号(7266)被其他测试工具占用。可以在命令窗口上输入netstat-ano查看本机的所有端口号以及对应的进程占用程序(PID)。打开任务管理器,找到与端口对应的PID,将其关闭,最后重启。…

  • 海量数据处理技巧

    海量数据处理技巧数据时代来临,数据量的爆炸式增长是最为显著的特征。当高性能硬件的普及还跟不上这样的数据大潮时,如何在有限的时空资源内处理海量数据成为了计算机科学以及数理统计等领域最大的挑战。所谓“数据处理”,在本文中特指通过计算机技术,对海量数据进行存储、统计、查询等操作。我将在下面介绍一些基本的海量数据处理的方法,供大家参考。需要明确的一点是,现实情况复杂多变,所以对于海量数据处理这样大的主题,是不可能用一…

发表回复

您的电子邮箱地址不会被公开。

关注全栈程序员社区公众号