直接计算下面两个序列的卷积和_快速解锁键盘是哪个键

直接计算下面两个序列的卷积和_快速解锁键盘是哪个键算法70—-只有两个键的键盘【动态规划】

大家好,又见面了,我是你们的朋友全栈君。

一、题目:

最初在一个记事本上只有一个字符 ‘A’。你每次可以对这个记事本进行两种操作:

  1. Copy All (复制全部) : 你可以复制这个记事本中的所有字符(部分的复制是不允许的)。
  2. Paste (粘贴) : 你可以粘贴你上一次复制的字符。

给定一个数字 n 。你需要使用最少的操作次数,在记事本中打印出恰好 n 个 ‘A’。输出能够打印出 n 个 ‘A’ 的最少操作次数。

示例 1:

输入: 3
输出: 3
解释:
最初, 我们只有一个字符 'A'。
第 1 步, 我们使用 Copy All 操作。
第 2 步, 我们使用 Paste 操作来获得 'AA'。
第 3 步, 我们使用 Paste 操作来获得 'AAA'。

 

二、思路:

思路:这道题用动态规划做,这里先看规律:

当n = 1时,已经有一个A了,我们不需要其他操作,返回0

当n = 2时,我们需要复制一次,粘贴一次,返回2

当n = 3时,我们需要复制一次,粘贴两次,返回3

当n = 4时,这就有两种做法,一种是我们需要复制一次,粘贴三次,共4步,另一种是先复制一次,粘贴一次,得到AA,然后再复制一次,粘贴一次,得到AAAA,两种方法都是返回4

当n = 5时,我们需要复制一次,粘贴四次,返回5

当n = 6时,我们需要复制一次,粘贴两次,得到AAA,再复制一次,粘贴一次,得到AAAAAA,共5步,返回5

可以看出对于n,至多需要n步,即cppppp….,而如果可以分解成相同的几份,则可以减少次数,比如n=6时,目标是AAAAAA,可以分解为两个AAA或者三个AA,所以递推公式为:

dp[i] = min(dp[i], dp[j] + i / j);

i为1~n,j为1~i,i为外循环,j为内循环

原文:https://blog.csdn.net/qq_26410101/article/details/80878604

三、代码:

    def minSteps(self, n):
        """
        :type n: int
        :rtype: int
        """
        if n <= 1:
            return 0
        dp = [0] * (n+1)
        for i in range(2,n+1):
            dp[i] = i
        for i in range(3,n+1):
            for j in range(2,i//2+1):
                if i%j ==0:
                    dp[i] = min(dp[i],dp[j] + i//j)
        print(dp)
        return dp[-1]

 

转载于:https://www.cnblogs.com/Lee-yl/p/10275566.html

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/107054.html原文链接:https://javaforall.cn

【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛

【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...

(0)


相关推荐

发表回复

您的电子邮箱地址不会被公开。

关注全栈程序员社区公众号