球谐函数

球谐函数

因为题主是从光学角度提问的,下面就从光学角度出发作答,当然实际上无法绕开数学。

球谐函数和振动有关,从某种意义上来说,它和三角函数没什么区别。因为它们只是在“不同坐标系”下描述“不同方向”的振动。

我们知道,麦克斯韦方程导出的波动方程:

\nabla ^2 E - \mu \epsilon \frac{​{\partial ^2 E}}{​{\partial t^2 }} = 0

(均匀各向同性介质)是描述许多光学现象的出发点。直接假定场在时间上是简谐振动的 E(t) \propto e^{j\omega t}(单色光分析),立刻就有\nabla ^2 E + k_0^2 E = 0,其中:

k_0^2  = \omega ^2 \mu \epsilon

当然这个方程可以描述很多种现象,如果把E理解为温度T,并取:

k_0^2 =0

这就是稳态热扩散方程;如果把k_0^2理解为特征值,这就是单自由粒子的定态薛定谔方程。所以这个方程的解,及其表现出的一系列振动特征,在许多领域都是普适的。

我们通常会在3种坐标系下求解这个方程,也就是矩坐标、柱坐标、球坐标。

球坐标系:

02142928_598h.jpg

球坐标和直角坐的互换:

image image

具体应用,在光学中,比如矩形腔、矩形波导,圆柱腔、圆柱波导,球型腔。热学中,可以有方块、圆柱、球的热扩散问题。量子力学里可以有方势阱、柱状阱、有心力场(氢原子)中的粒子运动问题。

每种坐标系都有3个方向,矩坐标系x、y、z,柱坐标系r,\phi,z,球坐标系r,\theta ,\phi 。上述方程在每种坐标系的每个方向上都会形成特定的振荡形态(有时会出现衰减或放大形态)。球谐函数Y_l^m (\theta ,\phi )描述的就是球坐标系中在\theta ,\phi方向的振荡形态。这件事通过分离变量法可以看得很清楚。

方程的具体求解都是通过分离变量进行的,具体是:

矩坐标: E(x,y,z) = X(x)Y(y)Z(z)
柱坐标 :E(r,\phi ,z) = R(r)\Phi (\phi )Z(z)
球坐标 :E(r,\theta ,\phi ) = R(r)\Theta (\theta )\Phi (\phi)

具体求解过程教科书上都有,这里不再赘述,只看结果。注意,分离变量后的每一个子函数都描述了一个特定方向的形态。

矩坐标系的处理在数学上是最容易的,我们知道三个方向都有相似的振荡模式,由三角函数描述,比如sin k_x xcos k_x x,一般写为e^{jk_x x}。如果k_x是实数,就是一个振荡;如果是虚数,就是一个指数衰减(或放大)。

在柱坐标系中,Z(z)和矩坐标系没什么区别,也是e^{jk_z z}的形式。R(r)的解是贝塞尔函数,注意,贝塞尔函数J_n(x)Y_n(x)描述的就是径向振荡形态,I_n(x)K_n(x)描述的是径向放大或衰减形态。这和e^{jk_z z}有相似的意义。\Phi(\phi)具有e^{jm\phi}形式的解,也是一个振荡(由于\phi向通常要求周期性,故没有非振荡解),只是角向振荡。

在球坐标系中,R(r)的解是球贝塞尔函数,意义和柱坐标系下类似。\Phi(\phi)仍旧具有e^{jm\phi}形式的解(同样有周期性要求)。\Theta(\theta)描述了\theta方向的振荡,只不过具体数学形式比较复杂(涉及勒让德函数)。“球谐函数”就是Y_l^m (\theta ,\phi ) = \Theta (\theta )\Phi (\phi )

球坐标系:141533_beHM_614348.png,3D图:

02142930_yQoM.jpg

2D密度图:

02142930_7UxU.jpg

最后,上面出现的各种函数都有各自的正交完备性,类似于三角函数的正交完备性。所以可以用来展开其他函数,正如傅里叶变换。

转载于:https://my.oschina.net/wangsifangyuan/blog/1788601

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/101736.html原文链接:https://javaforall.cn

【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛

【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...

(0)


相关推荐

  • native 激活码(JetBrains全家桶)

    (native 激活码)2021最新分享一个能用的的激活码出来,希望能帮到需要激活的朋友。目前这个是能用的,但是用的人多了之后也会失效,会不定时更新的,大家持续关注此网站~IntelliJ2021最新激活注册码,破解教程可免费永久激活,亲测有效,下面是详细链接哦~https://javaforall.cn/100143.html…

  • pytest重试_联系人去重失败

    pytest重试_联系人去重失败安装:pip3installpytest-rerunfailures重新运行所有失败用例要重新运行所有测试失败的用例,请使用–reruns命令行选项,并指定要运行测试的最大次数:$py

  • BPTT深度理解「建议收藏」

    BPTT深度理解「建议收藏」本博客适合那些BP网络很熟悉的读者一基本结构和前向传播符号解释:1. cltctl:t时刻第l层的神经元的集合,因为cltctl表示的是一层隐藏层,所以图中一个圆圈表示多个神经元。2. hlthtl:第l层在t时刻的输出。因为hlthtl是一层隐藏层的输出,所以表示的是一个向量。3. LjLj:表示的是在j时刻,网络的输出的值和目标输出值的平方差,L表示的是所有时刻的平方差的和。4. WvWv:…

  • Spring之ORM

    Spring之ORMSpring之ORM

  • pig询问top k,每个返回hour和ad_network_id最大的两个记录(SUBSTRING,order,COUNT_STAR,limit)

    pig询问top k,每个返回hour和ad_network_id最大的两个记录(SUBSTRING,order,COUNT_STAR,limit)

  • .bat文件打开方式[通俗易懂]

    .bat文件打开方式[通俗易懂]有的时候不小心将后缀名.bat文件在选择打开方式时误勾选了用记事本或者其他文本编辑器打开,结果电脑上的*.bat文件的打开方式都变成了记事本或者其他文本编辑器。本方法就是恢复.bat文件的默认打开方式。1、同时按住windows键和R键,在出来的框中输入regedit,打开注册表编辑器。2、找到:计算机\HKEY_CURRENT_USER\SOFTWARE\MICROSOFT\WINDOWS\currentversion\Explorer\FileExts.bat删除除了openwithlist

发表回复

您的电子邮箱地址不会被公开。

关注全栈程序员社区公众号