Java设计模式简介(一):创建型模式

Java设计模式简介(一):创建型模式

设计模式(Design pattern)是一套被反复使用、多数人知晓的、经过分类编目的、代码设计经验的总结。使用设计模式是为了可重用代码、让代码更容易被他人理解、保证代码可靠性。 毫无疑问,设计模式于己于他人于系统都是多赢的,设计模式使代码编制真正工程化,设计模式是软件工程的基石,如同大厦的一块块砖石一样。项目中合理的运用设计模式可以完美的解决很多问题,每种模式在现在中都有相应的原理来与之对应,每一个模式描述了一个在我们周围不断重复发生的问题,以及该问题的核心解决方案,这也是它能被广泛应用的原因。
 

 

一、设计模式的分类:

总体来说,设计模式分为三大类:

创建型模式:共物五种:工厂方法模式,抽象工厂模式,单例模式,建造者模式,原型模式。

结构型模式:共七种:适配器模式,装饰器模式,代理模式,外观模式,桥接模式,组合模式,享元模式。

行为型模式:共十一种:策略模式,模板方法模式,观察者模式,迭代子模式,责任链模式,命令模式,备忘录模式,状态模式,访问者模式,中介者模式,解释器模式。

其实还有两类:并发型模式和线程池模式。用一个图片来整体描述一下:

Java设计模式简介(一):创建型模式

 

 

二、设计模式的六大原则:

1、开闭原则Open Close Principle):

开闭原则就是说对扩展开放,对修改关闭。在程序需要进行拓展的时候,不能去修改原有的代码,实现一个热插拔的效果。所以一句话概括就是:为了使程序的扩展性好,易于维护和升级,想要达到这样的效果,我们需要使用接口和抽象类。

2、里氏代换原则(Liskov Substitution Principle):

里氏代换原则 是面向对象设计的基本原则之一。里氏代换原则中说,任何基类可以出现的地方,子类一定可以出现。LSP是继承复用的基石,只有当衍生类可以替换掉基类,软件单位的功能不受影响时,基类才能被复用,而衍生类也能够在基础类上增加新的行为。里氏代换原则是对 “开闭原则” 的补充,实现 “开闭原则” 的关键步骤就是抽象化,而基类与子类的继承关系就是抽象化的具体实现,所以里氏代换原则是对实现抽闲化的具体步骤的规范。

3、依赖倒转原则(Dependence Inversion Principle):

这个是开闭原则的基础,具体内容:针对接口编程,依赖与抽象而不依赖于具体。

4、接口隔离原则(Interface Segregation Principle):

这个原则的意思是:使用多个隔离的接口,比使用单个接口要好。这是一个降低类之间耦合度的意思,从这儿我们看出,其实设计模式就是一个软件的设计思想,从大型软件架构出发,为了升级和维护方便。所以上文中多次出现:降低依赖,降低耦合。

5、迪米特原则(最少知道原则)(Demeter Principle):

为什么叫最少知道原则,就是说:一个实体应当尽量少的与其他实体之间发生相互作用,使得系统功能模块相对独立。

6、合成复用原则(Composite Reuse Principle):

原则是尽量使用合成/聚合的方式,而不是使用继承。

 

 

三、Java的23种设计模式:

从这一块开始,我们详细介绍Java中23种设计模式的概念,应用场景等情况,并结合他们的特点及设计模式的原则进行分析。

1、工厂方法模式(Factory Method):

工厂方法模式分为三种:

1.1 普通工厂模式:就是建立一个工厂类,对实现了同一接口的一些类进行实例的创建。首先看下关系图:

Java设计模式简介(一):创建型模式

举例如下:(我们举一个发送邮件和短信的例子)

首先,创建二者的共同接口:

public interface Sender {
	public void Send();
}

其次,创建实现类:

public class MailSender implements Sender {
	@Override
	public void Send() {
		System.out.println("this is mailsender!");
	}
}
public class SmsSender implements Sender {
 
	@Override
	public void Send() {
		System.out.println("this is sms sender!");
	}
}

最后,建工厂类:

public class SendFactory {
 
	public Sender produce(String type) {
		if ("mail".equals(type)) {
			return new MailSender();
		} else if ("sms".equals(type)) {
			return new SmsSender();
		} else {
			System.out.println("请输入正确的类型!");
			return null;
		}
	}
}

我们来测试下:

public class FactoryTest {
 
	public static void main(String[] args) {
		SendFactory factory = new SendFactory();
		Sender sender = factory.produce("sms");
		sender.Send();
	}
}

运行结果:

this is sms sender!

1.2 多个工厂方法模式:是对普通工厂方法模式的改进,在普通工厂方法模式中,如果传递的字符串出错,则不能正确创建对象,而多个工厂方法模式是提供多个工厂方法,分别创建对象。关系图:

Java设计模式简介(一):创建型模式

将上面的代码做下修改,改动下SendFactory类就行,如下:

public class SendFactory {
	
	public Sender produceMail(){
		return new MailSender();
	}
	
	public Sender produceSms(){
		return new SmsSender();
	}
}

测试类如下:

public class FactoryTest {
 
	public static void main(String[] args) {
		SendFactory factory = new SendFactory();
		Sender sender = factory.produceMail();
		sender.Send();
	}
}

运行结果:

this is mailsender!

1.3 静态工厂方法模式:将上面的多个工厂方法模式里的方法置为静态的,不需要创建实例,直接调用即可。

public class SendFactory {
	
	public static Sender produceMail(){
		return new MailSender();
	}
	
	public static Sender produceSms(){
		return new SmsSender();
	}
}
public class FactoryTest {
 
	public static void main(String[] args) {	
		Sender sender = SendFactory.produceMail();
		sender.Send();
	}
}

运行结果:

this is mailsender!

总体来说,工厂模式适合:凡是出现了大量的产品需要创建,并且具有共同的接口时,可以通过工厂方法模式进行创建。在以上的三种模式中,第一种如果传入的字符串有误,会不能正确创建对象,第三种相对于第二种,不需要实例化工厂类,所以,大多数情况下,我们会选用第三种——静态工厂方法模式。

 

2、抽象工厂模式(Abstract Factory):

个人觉得原博客的抽象工厂模式写的不怎么正确,关于该部分的内容可以参考这篇文章:Java设计模式(二)之创建型模式:抽象工厂模式

 

3、单例模式(Singleton):

单例对象(Singleton)是一种常用的设计模式。在Java应用中,单例对象能保证在一个JVM中,该对象只有一个实例存在。这样的模式有几个好处:

(1)某些类创建比较频繁,对于一些大型的对象,这是一笔很大的系统开销。

(2)省去了new操作符,降低了系统内存的使用频率,减轻GC压力。

(3)有些类如交易所的核心交易引擎,控制着交易流程,如果该类可以创建多个的话,系统完全乱了。(比如一个军队出现了多个司令员同时指挥,肯定会乱成一团),所以只有使用单例模式,才能保证核心交易服务器独立控制整个流程。

首先我们写一个简单的单例类:

public class Singleton {
 
	/* 持有私有静态实例,防止被引用,此处赋值为null,目的是实现延迟加载 */
	private static Singleton instance = null;
 
	/* 私有构造方法,防止被实例化 */
	private Singleton() {
	}
 
	/* 静态工程方法,创建实例 */
	public static Singleton getInstance() {
		if (instance == null) {
			instance = new Singleton();
		}
		return instance;
	}
 
	/* 如果该对象被用于序列化,可以保证对象在序列化前后保持一致 */
	public Object readResolve() {
		return instance;
	}
}

这个类可以满足基本要求,但是,像这样毫无线程安全保护的类,如果我们把它放入多线程的环境下,肯定就会出现问题了,如何解决?我们首先会想到对getInstance方法加synchronized关键字,如下:

public static synchronized Singleton getInstance() {
		if (instance == null) {
			instance = new Singleton();
		}
		return instance;
	}

但是,synchronized关键字锁住的是这个对象,这样的用法,在性能上会有所下降,因为每次调用getInstance(),都要对对象上锁,事实上,只有在第一次创建对象的时候需要加锁,之后就不需要了,所以,这个地方需要改进。我们改成下面这个:

public static Singleton getInstance() {
		if (instance == null) {
			synchronized (instance.class) {
				if (instance == null) {
					instance = new Singleton();
				}
			}
		}
		return instance;
	}

似乎解决了之前提到的问题,将synchronized关键字加在了内部,也就是说当调用的时候是不需要加锁的,只有在instance为null,并创建对象的时候才需要加锁,性能有一定的提升。但是,这样的情况,还是有可能有问题的,看下面的情况:在Java指令中创建对象和赋值操作是分开进行的,也就是说instance = new Singleton();语句是分两步执行的。但是JVM并不保证这两个操作的先后顺序,也就是说有可能JVM会为新的Singleton实例分配空间,然后直接赋值给instance成员,然后再去初始化这个Singleton实例。这样就可能出错了,我们以A、B两个线程为例:

a>A、B线程同时进入了第一个if判断

b>A首先进入synchronized块,由于instance为null,所以它执行instance = new Singleton();

c>由于JVM内部的优化机制,JVM先画出了一些分配给Singleton实例的空白内存,并赋值给instance成员(注意此时JVM没有开始初始化这个实例),然后A离开了synchronized块。

d>B进入synchronized块,由于instance此时不是null,因此它马上离开了synchronized块并将结果返回给调用该方法的程序。

e>此时B线程打算使用Singleton实例,却发现它没有被初始化,于是错误发生了。

所以程序还是有可能发生错误,其实程序在运行过程是很复杂的,从这点我们就可以看出,尤其是在写多线程环境下的程序更有难度,有挑战性。我们对该程序做进一步优化:
 

private static class SingletonFactory{         
        private static Singleton instance = new Singleton();         
    }         
    public static Singleton getInstance(){         
        return SingletonFactory.instance;         
    } 

实际情况是,单例模式使用内部类来维护单例的实现,JVM内部的机制能够保证当一个类被加载的时候,这个类的加载过程是线程互斥的。这样当我们第一次调用getInstance的时候,JVM能够帮我们保证instance只被创建一次,并且会保证把赋值给instance的内存初始化完毕,这样我们就不用担心上面的问题。同时该方法也只会在第一次调用的时候使用互斥机制,这样就解决了低性能问题。这样我们暂时总结一个完美的单例模式:
 

public class Singleton {
 
	/* 私有构造方法,防止被实例化 */
	private Singleton() {
	}
 
	/* 此处使用一个内部类来维护单例 */
	private static class SingletonFactory {
		private static Singleton instance = new Singleton();
	}
 
	/* 获取实例 */
	public static Singleton getInstance() {
		return SingletonFactory.instance;
	}
 
	/* 如果该对象被用于序列化,可以保证对象在序列化前后保持一致 */
	public Object readResolve() {
		return getInstance();
	}
}

其实说它完美,也不一定,如果在构造函数中抛出异常,实例将永远得不到创建,也会出错。所以说,十分完美的东西是没有的,我们只能根据实际情况,选择最适合自己应用场景的实现方法。也有人这样实现:因为我们只需要在创建类的时候进行同步,所以只要将创建和getInstance()分开,单独为创建加synchronized关键字,也是可以的:
 

public class SingletonTest {
 
	private static SingletonTest instance = null;
 
	private SingletonTest() {
	}
 
	private static synchronized void syncInit() {
		if (instance == null) {
			instance = new SingletonTest();
		}
	}
 
	public static SingletonTest getInstance() {
		if (instance == null) {
			syncInit();
		}
		return instance;
	}
}

考虑性能的话,整个程序只需创建一次实例,所以性能也不会有什么影响。

补充:采用”影子实例”的办法为单例对象的属性同步更新:

public class SingletonTest {
 
	private static SingletonTest instance = null;
	private Vector properties = null;
 
	public Vector getProperties() {
		return properties;
	}
 
	private SingletonTest() {
	}
 
	private static synchronized void syncInit() {
		if (instance == null) {
			instance = new SingletonTest();
		}
	}
 
	public static SingletonTest getInstance() {
		if (instance == null) {
			syncInit();
		}
		return instance;
	}
 
	public void updateProperties() {
		SingletonTest shadow = new SingletonTest();
		properties = shadow.getProperties();
	}
}

通过单例模式的学习告诉我们:

1、单例模式理解起来简单,但是具体实现起来还是有一定的难度。

2、synchronized关键字锁定的是对象,在用的时候,一定要在恰当的地方使用(注意需要使用锁的对象和过程,可能有的时候并不是整个对象及整个过程都需要锁)。

到这儿,单例模式基本已经讲完了,结尾处,笔者突然想到另一个问题,就是采用类的静态方法,实现单例模式的效果,也是可行的,此处二者有什么不同?

首先,静态类不能实现接口。(从类的角度说是可以的,但是那样就破坏了静态了。因为接口中不允许有static修饰的方法,所以即使实现了也是非静态的)

其次,单例可以被延迟初始化,静态类一般在第一次加载是初始化。之所以延迟加载,是因为有些类比较庞大,所以延迟加载有助于提升性能。

再次,单例类可以被继承,他的方法可以被覆写。但是静态类内部方法都是static,无法被覆写。

最后一点,单例类比较灵活,毕竟从实现上只是一个普通的Java类,只要满足单例的基本需求,你可以在里面随心所欲的实现一些其它功能,但是静态类不行。从上面这些概括中,基本可以看出二者的区别,但是,从另一方面讲,我们上面最后实现的那个单例模式,内部就是用一个静态类来实现的,所以,二者有很大的关联,只是我们考虑问题的层面不同罢了。两种思想的结合,才能造就出完美的解决方案,就像HashMap采用数组+链表来实现一样,其实生活中很多事情都是这样,单用不同的方法来处理问题,总是有优点也有缺点,最完美的方法是,结合各个方法的优点,才能最好的解决问题!

 

4、建造者模式(Builder):

个人觉得原博客的建造者模式写的不怎么正确,关于该部分的内容可以参考这篇文章:Java设计模式(四)之创建型模式:建造者模式

 

5、原型模式(Prototype):

原型模式虽然是创建型的模式,但是与工程模式没有关系,从名字即可看出,该模式的思想就是将一个对象作为原型,对其进行复制、克隆,产生一个和原对象类似的新对象。本小结会通过对象的复制,进行讲解。在Java中,复制对象是通过clone()实现的,先创建一个原型类:

public class Prototype implements Cloneable {
 
	public Object clone() throws CloneNotSupportedException {
		Prototype proto = (Prototype) super.clone();
		return proto;
	}
}

很简单,一个原型类,只需要实现Cloneable接口,覆写clone方法,此处clone方法可以改成任意的名称,因为Cloneable接口是个空接口,你可以任意定义实现类的方法名,如cloneA或者cloneB,因为此处的重点是super.clone()这句话,super.clone()调用的是Object的clone()方法,而在Object类中,clone()是native的,具体怎么实现,我会在另一篇文章中,关于解读Java中本地方法的调用,此处不再深究。在这儿,我将结合对象的浅复制和深复制来说一下,首先需要了解对象深、浅复制的概念:

浅复制:将一个对象复制后,基本数据类型的变量都会重新创建,而引用类型,指向的还是原对象所指向的。

深复制:将一个对象复制后,不论是基本数据类型还有引用类型,都是重新创建的。简单来说,就是深复制进行了完全彻底的复制,而浅复制不彻底。

此处,写一个深浅复制的例子:

public class Prototype implements Cloneable, Serializable {
 
	private static final long serialVersionUID = 1L;
	private String string;
 
	private SerializableObject obj;
 
	/* 浅复制 */
	public Object clone() throws CloneNotSupportedException {
		Prototype proto = (Prototype) super.clone();
		return proto;
	}
 
	/* 深复制 */
	public Object deepClone() throws IOException, ClassNotFoundException {
 
		/* 写入当前对象的二进制流 */
		ByteArrayOutputStream bos = new ByteArrayOutputStream();
		ObjectOutputStream oos = new ObjectOutputStream(bos);
		oos.writeObject(this);
 
		/* 读出二进制流产生的新对象 */
		ByteArrayInputStream bis = new ByteArrayInputStream(bos.toByteArray());
		ObjectInputStream ois = new ObjectInputStream(bis);
		return ois.readObject();
	}
 
	public String getString() {
		return string;
	}
 
	public void setString(String string) {
		this.string = string;
	}
 
	public SerializableObject getObj() {
		return obj;
	}
 
	public void setObj(SerializableObject obj) {
		this.obj = obj;
	}
 
}
 
class SerializableObject implements Serializable {
	private static final long serialVersionUID = 1L;
}

要实现深复制,需要采用流的形式读入当前对象的二进制输入,再写出二进制数据对应的对象。

 

原文转自:

https://blog.csdn.net/zhangerqing/article/details/8194653

 

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

发布者:全栈程序员-用户IM,转载请注明出处:https://javaforall.cn/100079.html原文链接:https://javaforall.cn

【正版授权,激活自己账号】: Jetbrains全家桶Ide使用,1年售后保障,每天仅需1毛

【官方授权 正版激活】: 官方授权 正版激活 支持Jetbrains家族下所有IDE 使用个人JB账号...

(0)


相关推荐

  • vue js Object转String,String转Object,本地存储「建议收藏」

    vue js Object转String,String转Object,本地存储「建议收藏」将对象转换为json字符串并存储到本地window.localStorage.setItem(‘info’,JSON.stringify(this.form));从本地存储获取json字符串并转换为对象varobj=JSON.parse(window.localStorage.getItem(‘info’));

  • sublime text3 替换(sublime替换成换行符)

    我遇到一个文章,需要把所有的(数字)换为[数字]于是我使用SublimeText的替换首先,我们需要打开正则使用“Alt+R”或打开“Ctrl+h”选择正则。然后我们开始输入正则,“((\d+)”我们需要拿出的是数字,所有在数字加“()”。于是在替换写“[1\]”,其中1\]”,其中0就是所有的,$1就是第一个括号。如何使用正则可以去看正则表达入门。Suml

  • 微信开放平台扫码登录[通俗易懂]

    微信开放平台扫码登录[通俗易懂]微信开放平台扫码登录的功能只有已经认证过的微信公众号才可以使用,很多学习微信的同学可能没办法使用这个功能,但是别担心,以下网址中有很多账号可以使用:【想要获取更多公众账号可以关注微信公众号:小D课堂】https://mp.weixin.qq.com/s?__biz=MzUyMDg1MDE2MA%3D%3D&idx=2&mid=2247483689&sn=5…

  • 快速排序基本思路(通俗易懂+例子)「建议收藏」

    快速排序基本思路(通俗易懂+例子)「建议收藏」快速排序今天看到大神写的一篇快速排序的博客,肃然起敬,觉得原来快速排序这么简单下面进行简单的试试快速排序的基本思想是1、先从数列中取出一个数作为基准数2、分区过程,将比这个数大的数全放到它的右边,小于或等于它的数全放到它的左边3、再对左右区间重复第二步,直到各区间只有一个数概括来说为挖坑填数+分治法下面举例来进行说明,主要有三个参数,i为区间的开始地址,j为区间

  • java如何获取服务器路径

    java如何获取服务器路径一,别人的做法StringcontextPath=request.getContextPath();StringrealPath=request.getSession().getServletContext().getRealPath(“/”);StringbasePath=request.getScheme()+”://

  • jupyter跟python的关系_jupyter python

    jupyter跟python的关系_jupyter python大家好,我是时间财富网智能客服时间君,上述问题将由我为大家进行解答。jupyter和pycharm区别如下:1、Python是一种广泛使用的高级的、通用的、解释的、动态编程语言。”Python是一种相当古老且流行的语言,它是开源的,常被应用于网站开发(利用Django、Flask等框架)、科学统计计算(NumPy、SciPy等库可以帮助计算)、软件开发等甚至更多。Jupyter项目开…

发表回复

您的电子邮箱地址不会被公开。

关注全栈程序员社区公众号